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This study addresses the hypothesis that the following cell adhesion molecules

(CAMs): homing-associated cell adhesion molecule (HCAM), very late antigen-4

(VLA-4) and L-selecti I I . .
n p ay a ro e m the trafficking of hematopoietic progenitor cells

(HPCs) between the bone marrow microenvironment and the peripheral circulation. In

order to ascertain differences in CAM expression based on physiologic compartment, the

expression of HCAM, VLA-4 or L-selectin per CD34+ myeloid progenitor cell was

assessed between paired samples of blood and marrow. CAM expression was flow

cytometrically quantitated in paired samples obtained from patients treated with

cell than those in circulation. To functionally demonstrate the hematopoietic potential of

mobilizing doses of granulocyte-colony stimulating factor (G-CSF) or from normal

donors donating for allogeneic transplant. In G-CSF mobilized patients, marrow derived

CD34+ myeloid progenitor cells expressed more VLA-4 per cell than those in circulation.

In normal donors, marrow derived myeloid progenitor cells expressed more CD34 per

CAM expressing (HCAM+, VLA-4+ or L-selectin+) CD34+ myeloid progenitors, colony

forming unit (CFU) and long term culture initiating cell (LTCIC) assays of flow

cytometrically sorted normal marrow and blood CAM+!-CD34+myeloid progenitors were

performed. L-selectin+CD34+ myeloid progenitors formed a greater percentage of

BFU-E colonies and a lower percentage of CFU-GM colonies than all other CAM+!-

I bl d In normal donors, CAM+!-CD34+CD34+ myeloid progenitors sorted from norma 00.

. . d f blood formed significantly more colonies per 10· platedmyeloid progerutors sorte rom

. L-selectin+CD34+ myeloid progenitors derivedcells than those denved from marrow.

. d . .fi antly more L TCIC (per 10· sorted CAM+CD34+myeloid
from marrow contame srgni IC

x



www.manaraa.com

progenitors) than those expressing RCAM or VLA-4. In order to determine whether

CD34+ myeloid progenitors utilize VLA-4 to bind to fibronectin (FN), in vitro binding

assays were performed Adhesion of normal blood derived VLA-4+ CD34+myeloid

progenitors to FN was blocked by the addition of monoclonal antibodies against the a4

subunit of VLA-4. These data suggest a model ofHPC trafficking, in which HPCs

utilize VLA-4 to adhere to components of the bone marrow microenvironment, while

HPe modulation of L-selectin affinity plays an important role in HPC homing and a less

direct role in hematopoietic reconstitution.

Abstract Approved: __ .L-L-'-='--_':=I~~+~ -:-:=-- _
Major Professor: WI iam . Janssen, Ph.D. ..
Associate Professor, Depa ent of Internal Medicine
and Department of Pathology and Laboratory Medicine

4/?f::J 1998Date Approved:: L _
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concept of a hematopoietic stem cell2-4 Using genetically identical mice, Lorenz et al.

INTRODUCTION

Basics of hematopoiesis-a historical narrative

Hematopoiesis, the production and development of blood cells, is a complex

process dependent upon the existence of hematopoietic stem cells. By definition, a

hematopoietic stem cell is capable of self-renewal and replenishing all lineages of the

hematopoietic system, a characteristic known as pluripotency. The concept of a common

ancestral stem cell was first proposed almost a century ago by Artur Pappenheim

(1870-1916). I Since that time, compelling evidence has accumulated to support the

found that irradiated mice could be rescued from death with marrow from a non-

irradiated mouse.' The hematopoietic reconstitution in the marrow transplanted mice was

believed to be due to the transfer of either a cellular component or a humoral component

within the marrow graft. To address this issue, Ford et al. transplanted marrow labeled

with the T6-marker chromosome into irradiated mice. After hematopoietic

reconstitution, the hematopoietic cells of the rescued mice were found to

be positive for the T6-marker chromosome.' This study showed that a cellular component

. . bei transfierred from the marrow graft to the transplant recipient.
of donor origin was emg

1
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Whether a single cell t " d
ype or a rnixe cell type was responsible for hematopoietic

reconstitution post-transpl t ti "
an a Ion remained unclear. By studying the splenic nodules

(centers of hematopoiesis), which form in irradiated mice post-transplantation,

researchers found a linear relationship between the number of normal marrow cells

transplanted and the number of splenic nodules formed." That is, the number of splenic

colonies formed quantitatively reflected the number of stem cells or hematopoietic

progenitor cells (HPCs) contained within the transplanted graft. Further study of this

model system revealed that the cells of each splenic nodule were clonogenically

identical. The infusion of cells from one nodule into another irradiated mouse resulted in

splenic nodules of cells cytogenetically identical to the cells of the originally transplanted

nodule.Y Spleen colony (colony forming unit-spleen, CFU-S) assays such as these

confirmed that a cellular component was being transferred in the graft and suggested that

reconstitution of hematopoietic lineages could result from a single cell type.

In response to the inability to apply the CFU-S assay clinically, as well as the

tediousness involved in its execution, in vitro colony forming unit (CFU) assays were

developed.P CFU assays involve seeding cells from a stem cell source such as bone

" "I" d tri in the presence of growth factors known to stimulatemarrow II1to a semi-so I rna IX

lineage-specific hematopoietic differentiation. The semi-solid matrix prohibits the

II from the point of seeding of the original growth factormigration of daughter ce s away

of cells (a colony) represents all of the progeny ofresponsive parent cell. Thus a group

II 0 I the hematopoietic cells able to respond to growth factorone parent ce. n y

" hil the unresponsive hematopoietic cells
supplemented in the media form colomes, w I e

2
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presumably die. For example, the addition of the growth factor erythropoietin to the

culture media results in the formation of two types of erythroid colonies known as burst

forming unit-erythroid (BFU-E) or colony forming unit-erythroid (CFU-E). Likewise,

the addition of the growth factor granulocyte macrophage-colony stimulating factor

(GM-CSF) to the culture media results in the formation of myeloid colonies known as

colony forming unit-granulocyte macrophage (CFU-GM). The formation of BFU-E or

CFU-E colonies in vitro indicates the potential of seeded cells to restore erythroid cells,

while the formation of CFU-GM colonies indicate the potential of seeded cells to restore

the granulocytic and monocytic myeloid lineages. Studies using CFU assays have shown

that cells from the mononuclear fraction of mammalian bone marrow, peripheral blood

and cord blood can give rise to myeloid lineages when cultured in the presence of

lineage-specific growth factors."

To observe, in an in vitro setting, the long-term hematopoietic potential of cells

from the mononuclear fraction of mammalian bone marrow, long term bonemarrow

cultures (LTBMCs) were developed. 10 Subsequently, LTBMCs have been adapted such

that the long-term hematopoietic potential of cells from the mononuclear fraction of

LTBMCs are established by culturingperipheral blood and cord blood may be observed.

nucleated marrow cells in a specifically defined media until confluent. The confluent

. . ting radiation-sensitive pluripotent HPCswhile sparingcultures are ndden of contamma III

., ., II Cells from a stem cell source to be analyzed (marrow,the stromal cells via irradiation.

. d' d tromal cultures and begin to proliferate andblood, etc.) are plated onto the irra late s

d' hanges cells which are no longerbound by the
differentiate. During weekly half me ia c ,

3
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4

stromal elements in the L TBMC
are collected and analyzed with CFU assays to

determine their clonogenic potential. The formation of CFU colonies from nonadherent

cells after LTBMC d ..
emonstrate the ability of cells within a stem cell source to restore

myeloid lineages. Lymphoid lineage restoration may be assessed via long-term culture in

media containing fetal calf serum and no exogenous steroids.ll,12 LTBMC assays

performed in this manner have demonstrated that mononuclear cells derived from either

bone marrow, peripheral blood or cord blood contain pluripotent hematopoietic cell

types.

Recall that hematopoietic stem cells by definition are pluripotent and capable of

self-renewal. Maintenance of LTBMCs plated in limiting dilutions of a stem cell source

in conjunction with CFU assays, in the form of long term culture initiating cell (LTCIC)

assays, enables retrospective extrapolation of the number of stem cells contained within

the assayed product (e.g. mononuclear cells from marrow). The ability of cultured cells

to form CFU colonies at the end of the LTBMC portion of the LTCIC assay (i.e" after 5

weeks or more of culture) demonstrates that the cells within the originally seeded product

can maintain long term hematopoiesis and possess clonogenic potential indicative of a

. . II 13 lhematopoietic stem ce. '

As suggested by LTBMC and LTCIC assays, long-term hematopoiesis in vitro

results from expansion of a single cell type which adheres to a supportive stromal layer

and requires stimulation with specific hematopoietic growth factors. 15,16 Analysis of

I 11 I has demonstrated that stromal cells produce a variety of
LTBMC stroma ce ayers

. for hematopoietic cell adherence." These data
cytokines in vitro which are necessary
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support the concept that norm Ih "
a ematopOlesls depends upon the presence of a

pluripotent stem cell, adhesion to str
oma, and a complex orchestration of growth factor

production

5

Hematopoietic stem cel1 transplant

With the advent of several successful allogeneic marrow transplants in pediatric

patients with immunodeficiencies in the late 1960's, hematopoietic stem cell

transplantation became a feasible clinical therapy for the treatment of

hernatopathologies."?" At the present time, hematopoietic stem cell transplants are being

applied to a variety of hematologic and nonhematologic malignancies, benign

pathologies and genetical1y determined diseases. [6 The rationale for stem cell

transplantation as a therapeutic modality for patients with malignancies is as follows:

the patient is administered myeloablative (chemotherapy and/or radiation) therapy, the

marrow HPCs are concomitantly destroyed and the patient is rescued with a graft

containing HPCs which repopulate the marrow and restore hematopoiesis.

HPCs may be harvested from a variety of sources including marrow, peripheral

blood and cord blood. Autologous stem cel1 transplant involves harvest of the patient's

own HPCs either from marrow or apheresis of peripheral blood which are cryostored and

returned after myeloablative therapy. Marrow HPCs may be harvested via aspiration of

. . it of a patient or donor under general anesthesia. Blood HPCs
the iliac crest marrow cavi y

. d thr gh ccessive phereses. Since HPCs represent a relatively
are typIcally harveste ou su
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small fraction of mononUclear cells from marrow (1.5%) and blood (less than 0.5%), the

overall pool of HPCs available for harvest may be increased prior to harvest via

administration of growth factor therapies.i'<' Growth factor therapies prior to HPC

harvest might include, but are not limited to, treatment with hematopoietic growth factors

such as granulocyte-colony stimulating factor (G-CSF) or granulocyte

macrophage-colony stimulating factor (GM-CSF). A nonexhaustive list of stem cell

processing procedures which may be used prior to infusion includes red blood cell

salvage, T-cell depletion (allogeneic transplants only), tumor cell purging (autologous

transplants only) and CD34+ cell enrichment (both autologous and allogeneic

transplants). The stem cell product, regardless of source, may be cryopreserveduntil

time of transplant when it is thawed and intravenously infused into the transplant

recipient.

Post-transplant hematologic recovery

engraftrnent.

the peripheral circulation post-transplantation.

f i travenous infusion of a stem cell graft.engraftrnent occurs within 10-14 days 0 10

. . linical engraftment is most frequently. t a consensus definition, cAlthough there IS no

6

. st-transplantation engraftrnent involves the homingHematologic recovery or po

. 'of d HPCs to the marrow microenvironment and establishmentofof Intravenously I use

. entails both clinical and long-term hematologichematopoiesis. Hematologic recovery

f t the restoration of mature hematologiccells inClinical engraftrnent re ers 0

Under optimal conditions, clinical
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7

reported to have Occurred on th f t d h
e Irs ay t at the following peripheral blood counts have

been maintained for at least th .
ree consecutive days: absolute neutrophil count greater

than 500 per microliter and total platelet count of 20,000 per microliter without

transfusion supportA> Long-term engraftment refers to the restoration of the transplant

recipient's marrow stem cell population such that normal hematopoiesis is maintained for

at least one year post-transplant. 13 In a recent study of patients who received bone

marrow grafts transfected with a neomycin resistance marker gene, Brenner et al. was

able to demonstrate that autologous marrow infusion restores long-term hematopoiesis in

cancer patients for up to 18 months post-transplant." Brenner's findings demonstrate that

stem cell rescue in humans occurs through repopulation of the host marrow compartment

with donor hematopoietic cells; however, these findings do not rule out the possibility

that the patient's own stem cells surviving high-dose chemotherapy and/or radiotherapy

could also be contributing to hematopoietic recovery post-transplantation.

The most common post-transplantation complications include graft-versus-host

disease (allogeneic transplants only) and infection (both allogeneic and autologous

transplants) followed by venoclusive disease, graft failure, and disease relapse."

Manipulation of several parameters lessens the likelihood of these complications.

. . . c ctions of the immunocompromised transplant recipient maySuccessful opportumsuc mre

I d ost-transplantation procedures. Prior to transplant,be lessened through severa pre- an p

. . . fficient numbers of CD34+cells (a markerthe graft may be optimized to contam su

. I 1-5 x 106 cells per kilogram of recipientweight, and
indicative of HPCs), approximate y

. . ti Ito restore myeloid cells), approximately 1-5 x
sufficient CFU-GMs (indicates poten ia
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10' cells per kilogram of recipient weight. 26,27 In addition, the high-dose chemotherapy

regimen administered prior to transplant can affect post-transplant hematologic recovery

rates. 28 The period of severe neutropenia and thrombocytopenia suffered prior to clinical

engraftment may be significantly shortened through administration of growth factor

therapies and specific stem cell sources. Growth factors such as G-CSF or GM-CSF are

often administered post-transplant to accelerate granulocyte recovery. Themechanism

by which these growth factors speed granulocyte recovery is not known but is believed to

occur by stimulating CFU-GMs infused in the graft to differentiate.P

In the past two decades the probability of curing a patient via stemcell

transplantation has improved steadily depending on the type and stage of disease.16 Thus,

hematopoietic stem cell transplantation remains a feasible clinical therapy for the

acceleration of hematologic recovery after cytoreductive therapies.

The hematopoietic microenvironment and cell adhesion molecules

. . I idence that the marrow microenvironment is crucial for theThere ISsubstantia eVI

.. II 30-33 The marrow microenvironmentgrowth and differentiation of hernatopotetic ce s.

.' lis at various stages of differentiation,consists of HPCs, hematopoieuc ce

h cytokines and growth factors, andnon-hematopoietic cells, soluble factors sue as

. . e to all mature blood cell types., (ECM) HPCs give nsextracellular matrix .
, at least four different subsets, asieti cells or stromal cells compnseNon-hematopote IC

d i I de endothelial cells, macrophages,, ultures an me uidentified in in VItro marrow c ,

8
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adipocytes and pre-adipocytic fibroblasts.32 The marrow ECM contains collagen types I,

Ill, IV, and V; fibronectin; haemonectin; proteoglycans; hyaluronic acid and

glycosarninoglycans (GAGs, such as chondroitin sulfate and heparin sulfate}."

In studies using long term bone marrow cultures, researchers have demonstrated

the in vitro necessity for hematopoietic cell adherence to supportive stromal layers in

in hematopoietic reconstituion after hematopoietic stem cell transplant include

peripheralization and homing of HPCs, presentation of growth factors to HPCs and

conjunction with specific growth factors for maintenance of long-term hematopoiesis in

vitro.
IO

•
33

These findings suggest that hematopoietic cell adhesion coupled with cytokines

promotes long-term hematopoiesis and further suggest that adhesion is an important step

toward long term hematopoietic reconstitution. However, little is known concerning the

identity and role of cell adhesion molecules which are important during hematopoiesis

Possible roles for cell adhesion molecules (CAMs) in normal hematopoiesis and

regulation of mature blood cell egress from the marrow as they differentiate.

Understanding the mechanisms governing the trafficking ofHPCs to and from the

marrow microenvironment would clarify some of these aspects ofHPC physiology and

For example, down regulation orprove beneficial to stem cell transplantation therapy.

masking of key cell adhesion molecules involved in HPC adhesion to the marrow

. di HPC peripheralization. Thus understanding themicroenvironment might expe ite

. bl th development of more efficient and efficacious
peripheralization process might ena e e

. h currently available. Optimization ofHPC
I· tary mobilization regImens t ancomp irnen

9
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homing to the bone marrow micr .
oenvlronment post-transplantation is critical to the

problem of optimizing hem t I .
a 0 ogre recovery following stem cell transplant.

Hematopoietic progenitor cell peripheralization

The mechanism(s) by which hematopoietic progenitor cells are peripheralized

from the marrow microenvironment into the blood is unclear. However, studies

analyzing the differential surface expression of CAMs during hematopoietic cell

maturation have suggested a role for these molecules in the trafficking of HPCs to and

from the bone marrow microenvironment.tv" Of the CAMs known to mediate HPC

interactions with the marrow microenvironment, including integrins and cell surface

glycoproteins, the role of homing-associated cell adhesion molecule (HCAMlCD44),

very late antigen-4 (VLA-4, CD49d/CD29), and L-selectin (CD62L) in cell-to-cell and

cell-to-stroma interactions in the bone marrow strongly suggests that these cell adhesion

molecules play an important role in HPC peripheralization.v"

HCAM is involved in mature lymphocyte trafficking and is known to bind to

several extracellular matrix components including collagen, hyaluronic acid and

fibronectin.t?" In vivo and in vitro experiments have shown that the expression of

VLA-4 which is known to bind fibronectin, decreases as myeloid progenitors mature.,

. f VLA 4 ight aid the egress of these cells into the peripheralDecreased expression 0 - rm

, bilit 35 This concept is supported by in vivo
circulation by altering fibronectin bind 109 a I I y.

, , hi h th blockage ofVLA-4 mediated binding ofHPCs
murine and primate studies 10 w IC e

10
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In spite of the many advances in the field of stem cell transplant therapy, many

via administration of monoclonal anti-VLA-4 antl'bod It d '. .
y resu e In an IncreaseIn the

numbers of circulating HPCS.39,40These studies suggest that VLA-4 might play an

important role in the peripheralization of myeloid progenitor cells. L-selectin has been

shown to playa critical role in the 'homing' of mature lymphocytes to peripheral lymph

nodes and is expressed on a variety of mature and immature HPCS.41-43In a comparative

study of bone marrow and leukopheresis samples from patients who had received

chemotherapy followed by granulocyte-colony stimulating factor (G-CSF) treatment, the

proportion of circulating CD34+ HPCs expressing L-selectin tended to be greater in

leukapheresis products than in marrow." These studies suggest that L-selectin might play

an important role in CD34+ HPC homing to the marrow microenvironment.

problems remain. Two specific problems are the quality of mobilization of

hematopoietic cells into the peripheral circulation for collection and the role of stem cell

homing to the marrow in post-transplant hematopoietic recovery. Understanding the role

that CAMs play in HPC peripheralization and homing could lead to the development of

enhanced stem cell collection protocols and post-transplant engraftrnent rates,

respectively.

Current model ofHPC peripheralization

.. to cell adhesion molecules onAlthough the bulk of research pertammg

CAM, VLA-4 and L-selectin expression on
hematopoietic cells strongly suggests that H

11
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HPCs might be involved in h .
t e penpheralization ofCD34+ HPC h .s, t e specific

mechanisms and cell adhesion .
molecules mvolved remain unclear. In the currentmodel

for HPC peripheralization HPc .
, expressIOnofRCAM could enable binding to collagens

and hyaluronic acid, components of h .
t e the marrow mIcroenvironment (Figure I). HPCs

expressing VLA-4 could bind to fib .I ronectm, a component of the marrow

microenvironment, and VCAM I- , expressed on stromal and endothelial cells. Once

released into the vasculature HPC Id h, s cou orne to the marrow microenvironment via the

homing functions of L-selectin. Thus changes in VLA 4 and/or RCAM .- expressIOnon

HPCs, as a result of down-regulation or masking of cell adhesion molecule function,

could result in egress from the marrow microenvironment; while up-regulation or

changes in ligand binding affinity ofL-selectin expressed on HPCs could result in ingress

In order to determine if cell adhesion molecule modulation is involved in HPC

into the marrow microenvironment.

peripheralization, the present study was designed to address the manner inwhich RCAM,

VLA-4 and L-selectin are involved in the trafficking of hematopoietic progenitor cells

between the marrow microenvironment and the peripheral circulation First, this study

illuminates the quantitative and qualitative differences in CAM (RCAM, VLA-4or

L-selectin) expression on CD34+ HPCs from the blood and marrow ofG-CSF mobilized

patients or normal individuals. Second, the role of CAMmediated adhesionof HPCs

regarding in vitro c1onogenic potential, ability to establish long-term hematopoiesisand

. . II tent of each CAM+CD34+HPC subset was
overall pluripotent hematopoieuc stem ce con

. . '1' f CD34+myeloid progenitor cells to bind to fibronectin, a
determined. Third, the abi ity 0

12
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constituent of the bone marrow microenvironment, via the integrin VLA-4,was

analyzed in in vitro adhesion assays. These studies provide insight into the role of cell

adhesion molecules in hematopoietic progenitor cell trafficking between the marrow

microenvironment and the peripheral circulation.
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OBJECTIVES

Hypothesis

Modulation of the expression of th f II ' ,e 0 owing cell adhesion molecules: homing-

associated cell adhesion molecule, very late antigen-4 and Lit' I ', -se ec In p ay a role In

regulating the trafficking f oluri ho p unpotent ematopoietic progenitor cells between the bone

marrow microenvironment and the peripheral circulation.

The main objective of this study was to test three predictions of the operating

Main objective

hypothesis stated above. Those predictions were I) that differences in the surface

expression of the CAM (where CAM represents the cell adhesion molecules HCAM,

VLA-4 and L-selectin) would be detectable between specimens of marrow and blood;

2) that both high and low CAM expressing CD34+ cells can be functionally demonstrated

to be hematopoietic progenitors; and 3) that VLA-4 mediates adhesion ofCD34+ cells to

a fibronectin matrix, a component of the hematopoietic microenvironment.

-
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To determine if the CAM+1-CD34+ myeloid progenitor populations examined in

Specific aim I

To use flow cyto tri .
me rrc analysIs to determine the qualitative and quantitative

differences in cell surface expression ofHCAM, VLA .
-4 and L-selectm on CD34+

myeloid progenitors residing in the marro .
w as opposed to those circulating in the blood

of the same individual.

I) To enable detection and differentiation of CAM .expression on CD34+myeloid

progenitors, a flow cytometric analysis protocol was designed.

2) To enable interpretation of qualitative and quantitative differences in cell

surface CAM expression, a computer assisted analysis program was designed.

Specific aim 2

Specific Aim One can be functionally demonstrated to be hematopoietic progenitors

16

capable of establishing both short-term and long-term hematopoiesis in vitro.

1) To ensure that highly purified (>90%), viable populations ofCAM+1-CD34+

myeloid progenitors (i.e., those myeloid progenitors expressing (+) or not expressing (-)

HCAM, VLA-4, or L-selectin) from marrow and blood could be feasibly procured, a

flow cytometric single cell sorting protocol was developed.

-
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2) To detennine the short-te h "
rm ematopOietIc potential of flow cytometrically

sorted CAM"'CD34+ . ,
myeloid progemtors, in vitro colony forming unit assays were

utilized.

3) To detennine the long t h ' .
- errn ematopOletlc potential and the number of stem

cells contained within each sorted CAM+CD34+ I id . '.mye 01 progenitor population, In vitro

long term culture initiating cell assays were utilized.

Specific aim 3

To demonstrate that VLA-4 mediates adhesion of CD34+ cells to the

hematopoietic microenvironment.

I) To observe and quantitate CD34+ myeloid progenitor cell adhesion to

fibronectin, a component of the hematopoietic microenvironment, an in vitro adhesion

assay was developed.

2) To demonstrate that the adhesion of CD34+ myeloid progenitors to fibronectin

occurs, at least in part, via the cell adhesion molecule VLA-4, monoclonal antibodies

were used to block the binding functions of the a4 chain of the VLA-4 heterodimer to

the CS-l binding domain of fibronectin in in vitro adhesion assays.
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MATERIALS AND METHODS

Patient specimens

Seven female patients, ranging in age from 28 to 61 (mean=45, median=43),

diagnosed with breast cancer with no prior history of marrow involvement, received five

days of recombinant human granulocyte-colony stimulating factor (G-CSF,Neupogen;

Amgen, Thousand Oaks, CA) at 16 ug G-CSF / kg body weight by intravenous infusion.

Peripheral blood and bone marrow were collected on day 6 ofG-CSF mobilization.

Peripheral blood and bone marrow were collected from seven normal donors (1 male,

6 females) ranging in age from 27 to 58 (mean=37, median=34) who were being

harvested for allogeneic marrow transplantation. Peripheral blood was collected

immediately prior to bone marrow harvest in all cases. Informed consent was obtained

from each subject according to the guidelines and with the approval of the University of

South Florida Institutional Review Board.

18
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Preparation of nucleated marrow or peripheral blood cells

Preparation of human mononuclear cell populations from bone marrow and

peripheral blood was adapted f
rom a protocol developed by Boyum in the late 1960's

based on principles of density gradient centrifugation (APPENDIX 1)45,46Bone marrow

(20 mL) and peripheral blood (approximately 17 mL) samples were collected into

heparinized syringes and evacuated tubes, respectively. Each sample was diluted [1:1]

with Dulbecco' s phosphate buffered salt solution without calcium and magnesium

(DPBS, pH=7.0; Mediatech, Herndon, VA), layered onto Polymorphprep (pH=6.8±0.5,

density=I.113±0.001 g/mL, osmolarity 460±15 mOsm; NYCOMED PHARMA AS,

Oslo, Norway) at 20 mL diluted sample: 10 mL Polymorphprep and centrifuged at 500 x

g for 30 minutes at room temperature (RT). The mononuclear and polymorphonuclear

cell fractions were collected and washed with DPBS by resuspension and subsequent

centrifugation at 615 x g for 5 minutes at RT. The cells were washed in magnetic

activated cell sorting (MACS) Buffer (MB;[0.5% bovine serum albumin (Calbiochem-

Novabiochem Corporation, La Jolla, CA) in DPBSJ). Cell counts were determined using

an automated hematology analyzer (Sysmex K-1000; TOA Medical Electronics Co.,

Ltd., Kobe, Japan). Follow-up cell counts and determination of viable cells present in a

. -'" rrned using a hemacytometer in conjunction with the trypancell suspension were perro

. II . bilit 47,48 The trypan blue dye exclusion test is based onblue exclusion assay of ce via I I y.

. ' tact cell membranes that exclude certain dyes, such
the principle that live cells possess In

. 'di whereas dead cell do not In this test, a cell
as trypan blue, eosm, or propr rum,

19
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suspension is simply mixed with trypan blue and then visually examined to determine

whether cells take up or exclude dye. A clear cytoplasm would indicate a viable cell

whereas a blue cytoplasm would indicate a nonviable cell. Thus, a cell suspension was

diluted [1:1] with trypan blue stain (0.4% trypan blue in 0.85% saline, membrane

filtered, pH=7.0, osmolarity 290±340 mOsm; GibcoBRL, Life Technologies, Inc. Grand

Island, N.Y). Ten microliters of stained cell suspension were pipeted onto a

hemacytometer. The hemacytometer was placed onto the stage of binocular microscope

The percentage of viable cells was obtained from the following equation:

% Viable cells = ( Yiable cells. ) x (I00).
Viable cells + Nonviable cells

Cells were collected before and after centrifugation, mounted onto slides and stained with

Leukostat (Fisher Scientific, Pittsburgh, PA) for morphological confirmation of density

gradient enrichment of leukocytes (Figures 2 and 3.)

and the number of viable (clear, unstained) cells and nonviable (blue stained) cells were

microscopically enumerated per 10 grids. The concentration of the cell suspension was

determined from the following equation:

[Cells/mL ]=( total cell s counted _\ x (dilution factor) x 10"
number grids counted!

Preparation of nucleated peripheral blood buffy coat cells

. h al blood was collected into bags containing 63 mLNormal human penp er .

lution (USP for collection of 450 mL blood,anticoagulant citrate phosphate dextrose so

20
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A.

-

B.

Figure 2. Morphological confinuation of density gradient leukocyte enrichment of blood
specimen. Density gradient centrifugation of blood specimens was performed
using Ficoll-Paque Plus in order to enrich for leukocytes. Cells were collected
(A) before centrifugation (magnification 683X; bar = 15um) and (B) after
centrifugation (magnification 597X; bar = 17 urn), mounted onto slides and

stained with Leukostat.
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A.

B.

Figu re 3. Morphological confirmation of density gradient leukocyte enrichment of marrow
specimen. Density gradient centrifugation of marrow specimens was performed
using Polymorphprep in order to enrich for leukocytes. Cells were collected (A)
before and (B) after centrifugation, mounted onto slides and stained with
Leukostat. Magnification = 683X. Bar = 15 urn

22
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preferentially enriched for leukocytes using Ficoll-Paque® Plus because leukocyte

Appendix 2) After COllection, the product was combined with 2.2 g dextrose USP
,

900 mg NaCl, 750 mg mannitol USP, 27 mg adenine USP and 154 mEq sodium and

enriched for leukocytes via centrifugation Of th I k . .
. e eu ocyte ennched fraction (also

termed buffy coat), 50 uL was diluted [l:1] with DPBS for preparation of human

mononuclear cell populations as previously described46 Diluted buffy coat was layered

onto Ficoll-Paque® Plus (pH=74, densitY=l.077±O.OOI g/ml., osmolarity=300mOsm;

Pharmacia Biotech AB, Uppsala, Sweden) at [25 mL diluted buffy coat:lO mL Ficoll-

Paque® Plus] and centrifuged at 500 x g for 30 minutes at RT. Buffy coats were

separation using Polymorphprep (as described above for use with whole blood or marrow

samples) did not result in formation of a buffy coat layer after centrifugation. The

nucleated cell fraction was collected and resuspended in DPBS. In order to circumvent

the clogging of the Miltenyi columns due to platelet activation, the platelet content of

the nucleated cell fraction was reduced to s [100 x 106 platelets/mL] via a minimum of

three successive platelet reducing centrifugations at 200 x g for 8 minutes at RT using

DPBS as the wash buffer after each centrifugation;"

Enrichment for CD34+ cells

db IT at samples and bone marrowMononuclear cells from peripheral bloo , u y co

. . MACS CD34 Isolation. h d f r CD34+ hematopoietic progenitor cells usmg awere ennc e ,0

The MACS CD34 progenitor cell
b CA Figure 4).Kit (Miltenyi Biotec, Au urn, ,

23

•



www.manaraa.com

�.-
~.-

Buffy coat cells labelled with anti-CD34 paramagnetic bead conjugate.-
Labelled cell suspension layered onto Miltenyi column

~

?
~

Sample layered onto density gradient

500Xg

o
o
Iii

Plasma layer (Platelets)
Burry coat layer (Leukocytes)
Gradient and erythrocyte layer

CD34+ cell depleted fraction

~ Magnet removed

~

~
CD34+ cell enriched fraction

Figure 4.
w or blood samples.Enrichment of CD34+ cells from marro
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In accordance with the MACS CD34 progenitor cell isolation kit recommended

isolation kit is an indirect magnetic I b Ii
a e mg system for the isolation of CD34+

hematopoietic progenitor cells from a stem II
ce SOurce (marrow, blood, cord blood, etc.)

by po itive selection of CD34 expressing cells M I
. ononuc ear cells from a stem cell

source, obtained by density gradient centrifugation using Ficoll-Paque® Plus or

Polymorphprep (as previously described), are indirectly magnetically labelled using a

hapten-conjugated primary monoclonal antibody and an anti-hapten secondary antibody

coupled to MACS MicroBeads. The magnetically labelled cells are enriched on positive

selection columns in the magnetic field of the MiniMACs or VarioMACS column.

protocol, mononuclear cells from marrow, peripheral blood or buffy coats were washed

in MAC Buffer (MB;[O.5% bovine serum albumin (Calbiochem-Novabiochem) in

DPBS at pH 7.4]) via centrifugation at 615 x g for 5 minutes at RT. Cell counts were

determined using an automated hematology analyzer (Sysmex K-1000). Cells were

incubated with 100 ul, Reagent Al (Fe receptor blocking reagent; human

immunoglobulin) per 1 x 10· total cells for 5 minutes at 4 DC. One hundred microliters

of Reagent A2 (hapten-modified QBENDIO mAb which recognizes CD34)49per Ix 10·

total cells was added and incubation was carried out for an additional 15 minutes at 4DC.

. MB I 10· total cells and centrifuged at 615 x g for 5Cells were washed In 2.5 rnL per x

. 400 L MB and 100 ul,Reagent Bminutes at RT. The pellet was resuspended In /l

_. und to antibody which recognizes the
(colloidal super-paramagnetIc mlcrobeads bo

munication with Kevin Mills, Ph.D., Miltenyi
hapten of Reagent A2; personal com

. ed at 4 DCfor 15 minutes. Cells were
Biotec)>>S2 per I x Ia· total cells and incubat

25
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washed with MS, resuspended in MB at 500
ul. per Ix 108 total cells and filtered

through a 30 urn nylon mesh pre-separation filter (prewashed with 1.0mL MB;

Miltenyi Biotec). The type of positive selection col h
umn c osen for CD34' hematopoietic

progenitor cell enrichment depended on the b f
num er 0 total unseparated nucleatedcells

obtained after density centrifugation. The Mini-MAC S. .
separation Column WItha

maximum cellular capacity of 2 x 108 total cells was d h h .use w en t e sample contained

S 2 x 10' total unseparated, nucleated cells (determined using an automated hematology

analyzer after density gradient centrifugation as previously described; SysmexK-IOOO).

The VS' Vario-MACs Separation Column with a maximum cellular capacity of2 x 10'

total cells was used when the sample contained s 2 x 10' total nucleated cells (based on

cell counts using an automated hematology analyzer; Sysmex K-IOOO). TheMini-MACS

column was prewashed with 1.0 mL MB while the VS+Vario-MACs SeparationColumn

was prewashed with 3.0 mL MB in the presence of a magnet prior to addition of

microbead labelled sample. Unbound cells were eluted by washing the column three

times with 0.5 mL MB (Mini-MACS Separation Column) or with I mL MB

(VS+Vario-MACs Separation Column) and were discarded (listed as CD34' cell depleted

fraction in Figure 4). The bound cells (CD34+ cell enriched fraction) were collectedby

. 1 mL (Mini-MACS Separation Column)orremoving the magnet and gently pushing

. I )th gh the column with a syringe5 mL MB (VS+ Vario-MACs SeparatIOn Co umn rou

. CSF mobilized marrow and blood contained
plunger. CD34+ cell enriched fractIons ofG-

or of mean (s.e.m.) %] CD34+cells,
32±18% and 17±15% [mean ± 2 x standard err

. ometric analysis (next section). Normal donor
respectively, as determmed by flow cyt

26
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marrow and blood MAC positive fracti .
Ions contamed 57±IZo/, d 3

.e.m.%) D34+ cells res . 0 an ?±16% (mean±2 x
, pectlvely, as determined b

P
Y flow cytometric analysis (next

section). ooled normal buffy coat positive fracn .
actions contamed 48±5%

(m x s.e.m.%) CD34+ cells C II. e counts were perf d usiorme using an automated
hemat logy analyzer (S ysrnex K-IOOO) or hema cytometer as previously described

arnples of blood and marrow before and after CD34+ ell' h .
e ennc ment were mounted

onto lides and stained with L keu ostat as previously described, for morphological

confirmation of Miltenyi col I .umn mye Old progenitor cell enrichment of blood and

marrow samples (Figures 5 and 6, Appendix 3).

Flow cytornetric analysis

Flow cytometry employs instrumentation that scans single cells flowing past

excitation sources in a liquid medium." This technology provides rapid, quantitative,

multiparameter analyses on single living (or dead) cells. Measurement of visible and

fluorescent light emissions allows quantitation of antigenic, biochemical and biophysical

characteristics of individual cells. Flow cytometric technology can also separate distinct

subpopulations of cells on the basis of these measured characteristics, a technology called

electronic cell sorting discussed in the following section. Flow cytometry experiments

involve three distinct, interdependent phases (1) reagent preparation, cell preparation and

cell staining with fluorescent reagents (fluorochrome conjugated mAbs); (2) processing

the labelled cells with the flow cytometer and data collection of one or more parameter;

27
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A.

-
B.

-
Figure 5. Morphological confinuation of Miltenyi column enrichment of blood derived

myeloid progenitor cells. Leukocyte enriched blood specimens were labelledwith
an anti-CD34 paramagnetic bead conjugate and enriched for CD34+ cells using
MACS. Cells from fractions either (A) depleted ofCD34+ cells (magnification
608X; bar = 16 f!m) or (B) enriched for CD34+ cells (magnification 683X; bar=
15 urn) were mounted onto slides and stained with Leukostat (Figure 4).

28
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A.

B.

Figu re 6. Morphological confinnation of Miltenyi column enrichment of marrow derived
myeloid progenitor cells. Leukocyte enriched marrow specimens were labelled
with an anti-C034 paramagnetic bead conjugate and enriched for C034+ cells
using MACS Cells from each column fraction either (A) depleted of C034+
cells (magnification 512X; bar = 20 urn) or (B) enriched for C034+ cells
(magnification 598X; bar = 17 urn) were mounted onto slides and stainedwith

Leukostat (Figure 4).
29
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and ( ) computer assisted analysis of flow c _
ytometncally acquired data FACS

FA lib . can and
a I er flow cytometers (both from Becton D- .

ickinson Immunocytometry Systems
an Jo e, A; BDIS) utilize single air-cool d. '

e argon lasers which emit light at 488( . ~
turquoise). When a single fluorochrome labelled cell fl

ows past the argon laser each

fluor chrome emits distinct, distinguishable peak --emISSIOnwavelengths as follows:

flu r cein isothiocyanate at 525 nm (FITC, green), phycoerythrin at 575 nm (PE;

orange-red), and peridinin chlorophyll protein above 650 nm (PerCP; red; Figure 7)'3.'.

The peak emission wavelengths f h f h flor eac 0 t e uorochromes is sufficiently far enough

apart that each signal can be detected by separate detectors. Thus fluorescent signal may

be regarded as proportional to the amount of mAb attached to the antigenic determinants

of the analyzed cell.

Samples of 1 x 106 CD34+ cell enriched fractions or 50 ~L Quantum Simply

Cellular (QSC) Beads (2 X 10· QSC beads/mL; Flow Cytometry Standards Corporation,

San Juan, PR) were labelled with three different fluorochrome-conjugated mAbs (flow

(BDIS; San Jose, CA) unless otherwise noted. Samples were incubated for 30 minutes at

cytornetric fluorochrome conjugated mAb labelling summarized in Appendix 4). The

samples were incubated with mAbs from Becton Dickinson Immunocytometry Systems

4 °C protected from light with 20 ~L PE-conjugated anti-CD34 mAb (anti.HPCA-2),

10 J.LL PerCP-conjugated anti-CD45 (anti-HLe-l; an antigen present on all hematopoietic

cells) and one of the following FlTC-conjugated mAbs: 20 ~Lanti-CD44

(anti_HCAMIanti-Leu-44), 40 ~L anti-CD49d (anti-a4 chainofVLA-4 complex;

ME)
20 OILanti-CD62L (anti-L-selectinl anti-Leu-8).

Imrnunotech, Westbrook:, , or e-
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I orype-identical mouse mAbs to i I
rrre evant antige

ns served as controls (IgG2a-FITC
Immunotech; IgGI-FITC and IgGI-PE). '

Anti-CD29 (anti-Bl chain of VLA-4 co Imp ex;
Immunotech) served as a control f .

or recogmtion of the integrin VLA-4 (an a4131

heterodimer). Analysis of CD49d and CD29 ..
expresSion In our samples revealed that

there was no significant difference (p>O 05) b tw
. e een marrow or blood, thus confirming

that our measurements of CD49d represented VLA 4 d ..
- an not an umdentlfied a4 integrin.

R idual red blood cells (RECs) were lysed and the tib d dan ioocy-coate cells fixed by

incubation at BOIS's recommended concentrations of [I x 106 CD34+ enriched

cells/2 mL FACSTM Lysing Solution (BDIS)] or [I x 105 QSC beads/ 2 mL FACS Lysing

elution for 10 minutes at RT protected from light. RBC lysis involves the preferential

lysis of RBCs by the use of a hypotonic solution (FACSTM Lysing Solution) which leaves

the more robust polymorphonuclear and mononuclear cells intact. RBCs outnumber

leukocytes by about a thousand to one in the peripheral circulation; thus, the aquisition of

20,000 mononuclear events without removal of RBCs would not be technologically

practical. 56 After two washes with OPBS, the pellets were resuspended in 200 ul, of

DPBS and analyzed on a FACScan flow cytometer (BOIS). Fluorescence compensation,

electronic distinction between the peak emission of each fluorochrome, was adjusted

using cells labelled with either anti-CD 14-FITC or anti-CD 14-PE (BDlS) and an

. . I I (I G I FITC and IgG I-PE respectively;appropriate isotype-rdentica contro g - ,

. d· 4) 54 Levels of fluorescence intensity considered positive
BOl )(FIgure 8 and Appen IX .

. .. f m unlabelled cells (autofluorescence) or from
were set at regions above emISSIOns ro

.. id ntical control (nonspecific mAb binding;
cells labelled with an appropriate Isotype-I e
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Fi ure 8. Fluorescence compensation. Cell populations (circles) whose emmissions
spectra overlaps with another fluorochrome may be compensated (ie, false
positive events removed) by directing the flow cytometer to discard
fluorescence signal sensed in the inappropriate channeL When compensating
between FL I and FL2 channels, true FL1+ events whose emissions spectra
overlaps into the FLZ channel (e) may be compensated (e) by adjusting
flow cytometric parameters f-+); unlabelled cells (0) are detected as
negative events in both channels. Compensation between FL2 and FL3
channels (B) is performed as with FLIIFL2 compensation.
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Figure 8). Autofluorescence can
'. occur when cellular constituents absorb ener a .
light when Illuminated by las li h gy nd emil

er Ig t. Nonspecific mAb bi di
in mg can occur when Fe

present on the cell membrane bind the Fe .
portIOn of mAbs used for labelling

orward caner (FSC) events were collected 0 li .
n a mear scale, while side scatter (SSC)

nd flu re cence channel (FL I, FL2 and FL3)
events were collected on a log scale. List

mode til of 10,000 events per sample tub '.
e were acquired using Lysis II software in

conjunction with the F ACStar and FACS flcan ow cytometers or using CELLQuest in

conjunction with the FACSCaliber flow cytometer (all programs and instruments by

BD! ). Data files were analyzed offline using WinList software (Verity Software House,

Top ham, ME)

recept

The individual cell types in each sample were differentiated using a method

imilar to the one originally reported by Stelzer et al. 57 Analysis of SSC and CD45

fluorescence (CD45 is expressed on all human leukocytes but absent from non-

hematopoietic tissues) allowed differentiation of marrow and blood into distinct regions

of cell types including lymphocytes, monocytes, immature and mature granulocytes,

myeloid progenitors and lymphoid progenitors (Figure 9).'7.58 Individual cell types,

corresponding to SSC and CD45 fluorescence cell type regions, were sorted using a

F tar or FACSCaliber flow cytometer (BDIS) from samples of marrow and blood

(consult low cytometric single cell sorting section). Microscope slides were prepared of

. .f d counterstained with Leukostat
each sorted cell type region using a cytocentn uge an

..' d I I) L kocyte differentials of prepared slides enabled
(Fisher cientific; FIgures lOan . eu

confirmation of the morphologic characteristics of sorted cell type regions. Leukocyte
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igure 9. Flow cytomctric analysis of side scatter and CD45 fluorescence.Bloodand
marrow samples enriched for CD34+ cells were flow cytometrically
differentiated into lymphocytes, monocytes, granulocytes, lymphoid
progenitors and myeloid progenitors (gray) basedon side scatter andCD45

fluorescence.
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A.

-
B.

-
Figu re 10. Morphological confinnation of sorted lymphocytes and monocytes. Marrow

specimens were enriched for CD34+ cells and flow cytometrically sortedusing
side scatter and CD45 fluorescence based regions. Cells sorted basedon the
(A) lymphocyte region (magnification = 598X; bar = 17 urn) and the (B)
monocyte region (magnification = 683X; bar = 15 urn) were collected, mounted

onto slides and stained with Leukostat.
36
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A.

.,
B.

Figure 11.
Morphological confinnation of sorted grannlocytes and myeloid progenitors.
Marrow specimens were enriched for CD34+ cells and flow cytometrically sorted
using side scatter and CD45 fluorescence based regions. Cells sorted based on
the (A) immature and mature granulocyte region (magnification = 598X;bar =

17 urn) and the (B) myeloid progenitor region (magnification = 683X; bar =
15 urn) were collected, mounted onto slides and stained with Leukostat.
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. ki dl erformed by Dr. Sean Farrier, a senior hematology resident
differenualswere n y p

. f his findings by Dr. Lynn Moscinski Standard leukocyte
withconfirmatlon0 I

. .f d slide preparations include I) scanning the entire slide to
differenUalof cytocentn uge

. ntative field to count and 2) enumeration of specific cell typesdetennmethe most represe

until 100 total cells have been counted (2-4 fields are counted depending on the density

of cellsin the preparation, personal communication with Dr. Sean Farrier). A typical

leukocytedifferential of sorted cell type regions is listed in Table One.

The numberof CD34+ cells in the myeloid progenitor population was determined

bysubtractingthe PE false positive events of the isotype control from the CD34 + events

inthemyeloid progenitor gated population of each specimen. The percentage of CD34 +

cellswithin each sample was determined by dividing the total number of CD34+ cells by

thetotal number of cellular events as gated on SSC and CD45 fluorescence based regions

ineachspecimen (Figures 9 and 12). The percentage ofCD34+ cells within the myeloid

progenitorpopulationof each specimen was determined by dividing the number of

CD34'events in the myeloid progenitor gated population by the total number of events

inthemyeloid progenitor gated population. The total number of CAM+CD34+ cells in

themyeloidprogenitor population was determined by subtracting the FITC/PE false

positiveevents of the isotype control from the number ofCAM+CD34+ events in the

myeloidprogenitor t d I' f .ga e popu anon 0 each specimen. The percentage of CAM+ cells in

theCD34+my I id .
e 01 progemtor population was determined by dividing the number of

CAM'CD34' .
events III the myeloid progenitor gated population by the number of CD34+

eventsin the I'd
mye 01 progenitor gated population. The mean channel fluorescence for
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_bl One. Leukocyte differential of sorted cell type regions. On the basis of side scatter versus CD45
Iluo nee individual lymphocyte., monocyte., granulocyte. and myeloid progenitors were now
110m IMeally sorted according to cell type region. described by Stelzer et al." Leukocyte differentialsrLeuko tat stained slides of now cytometrically sorted cell type region. are Iiated as a percentage of
100 II wunted per slide. Leukocyte differential of a representative .orting experiment of normalrow i.! shownm.lr

Cell Type Region Sorted
(Based on Side Scatter versus CD45 Fluorescence)

Mature & MyeloidLymphocytes Monocytes Immature Progenitorsell Type Observed
Granulocvtes

52
Myelobla t

3 30Promyelocyte

3 7Myelocyte, neutrophilic

1 15 2tamyelocyte,
n utrophilic

1 20B nd neutrophil

5 51Segmented neutrophil

2Eo inophils (including
young forms)

Basophils (including
young forms)

90 3onocytes
3 6100 3Lymphocytes

3
PIa macytes

Pronormoblasts &
Ba ophilic normoblasts

Polychromatic
normoblasts and
Orthochromatic
normoblasts
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Figure 12. Flow cytometric analysis of cell adhesion molecule expression on CD34+
myeloid progenitors Samples enriched for CD34+ cells were labelled with
mAbs against C034, CD45 and one of the CAMs under investigation.
Myeloid progenitors were distinguished from all events (A) on the basis of side
scatter and CD45 fluorescence and gated (Figure 9). Gated myeloid progenitor
events (B) were then analyzed on the basis of CAM and C034 fluorescencein
order to determine the percentage of C034+ myeloid progenitors coexpressing
CAMs. Gated C034+ myeloid progenitor cells (gray) were analyzedto
determine their peak channel fluorescence such that CAM expression per
CD34+ myeloid progenitor could be quantitated. Analysis of marrowderived
HCAM+C034+ myeloid progenitors is depicted.
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each LJo\IVI_FITC conjugate within the CD34+ I'
m ye Old progenitor Population was

determined and used to extrapolate the n b .
urn er of Abc umts per CD34+ myeloid

progenitor as described in the following section.

of Q beads to quantitate number of antibodies bound per cell

beads were provided from the manufacturer in a mixture of five types of

bead • each with a defined number of antibody binding sites or antibody binding capacity

( be) units per bead. The QSC bead mixture was labelled and analyzed just as the cells

were labelled; that is, using the same isotype and quantity of mAb, incubation conditions,

wash conditions and acquistion conditions used to label the blood and marrow samples.

(Figure 13) and plotted against the each QSC bead's Abc units or against the natural log

The mean peak channel fluorescence for each of the five beads was determined

In) of each QSC bead's Abc units (Figure 14). Linear regression analysis of these

standard curves generated a best fit line from which the number of Abc units per CD34+

myeloid progenitor cells from blood or marrow was determined (Figure 14). Analysis

and graphics of standard curves of peak channel fluorescence versus antibody binding

. . Lotus 1-2-3 version 4 (Lotus Developmentcapacity were created for each antibody usmg

Corporation, Cambridge, MA) .
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Figu re 13. Determination of mean peak channel fluorescence of QSC bead standards.
umber of binding sites per QSC bead: 1=0; 11=6,841;11I=16,438;

IV=51,927 and V=81, 191 Representative experiment depicted.
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Flov C ometric single cell Sorting

II processing of blood and marrow samples was p rf .. e onned In a sterilemanner in
u n for sterile sorting and subseq t f .uen In vitro assays P' .. nor to sterile sorting with

aliber flow cytometer, the instrument was thoroughly washed with sterile

filtered 700/0 ethanol. Each of the samples to be I d 'ana yze were collected as data files on

the fl w cyt meter (described in the flow cytometric an I' ion)a YSlSsection . Random sort

t were drawn, sterile filtered 70% ethanol was placed on the s I" .amp e mjection port

IP , the sheath fluid reservoir was replaced with a reservoir containing sterile filtered

70% ethanol and three sterile 50 mL conical tubes tubes were placed onto the collection

tub pons. The instrument was directed to sort until each of the three collection tubes

replaced with three additional sterile 50 rnL conical tubes. The reservoir containing 70%

had filled to approximately 37 rnL per tube, which took approximately 9 minutes per

collection tube. The collection tubes containing 70% ethanol were discarded and

ethanol was replaced with a reservoir containing sterile, filtered phosphate puffer

(pH 7.4; Appendix 5) and sterile DPBS was placed onto the SIP. The instrumentwas

directed to sort until each of the three collection tubes had filled to approximately 37 mL

per tube, as described above. Once the FACSCaliber had been sterilized in this manner,

the sort sample was placed onto the SIP. Aquisition of the sort sample on FSC versus

S fluorescence enabled region 1 to be drawn about small, viable, single myeloid

Idle (Figure 15) This regionwas based
progenitor cells within the marroW or b 00 samp .

. di d b SSC versus CD45 fluorescence as previously
00 light scatter patterns Ictate y
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Fi ure 1 . flow cytometric sorting regions and gales. Pooled buffy coat samples were
enriched for CD34+ cells and labelled with fluorochrome conjugated mAbs for
flow cytometric analysis and single cell sorting. Labelled cells were analyzedon
the basis of side scatter and CD34 expression. Small CD34+ cells (Region I)
were gated and analYzed on the basis of forward scatter versus side scatter such
that Region 2 could be drawn around myeloid progenitors. Region 2 was gated
and analyzed on the basis of CAM versus CD34 fluorescence such that Region 3
could be drawn around CAM+CD34+ events. The flow cytometer was directed
to sort only those events which satisfied the criteria of Region 2 (myeloid
progenitors of low cellular complexity) and Region 3 (cells expressing both

CAM and CD34).
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d cribed (Figure 9) The logic of the FACSCalib fl
er ow cytometer sorting software

rcquir that the fir t region in th .
e sort gatmg be based on FSe versus sse fluorescence.

In rd t determine where the .. .
. region inclusive of target cells (CAM+I-CD34+ myeloid

pro enu rs) hould be drawn in FSC versus SSC fl
uorescence plots, Region 1was drawn

10 In lude viable single CD34' loid ., mye 01 progellitor cells on the basis of SSCversus

D 4 f1 r cenee. Region I was gated and analyzed on the basis ofFSC versus SSC

such th t region 2 could be drawn around myeloid progenitors. Region 2 was gated and

anal zed n the basis of CAM (HCAM, VLA-4 or L-selectin) versus CD34 fluorescence

such that Region 3 could be drawn around CAM+CD34+events (Figure 15). The flow

cytometer was then directed to sort only those events which satisfied the criteria of

Re ion 2 (myeloid progenitors of low cellular complexity) and Region 3 (cells

expressing both CAM and CD34; Figure 15). The target cells were sorted at a threshold

rate of approximately 1500 events per second and a sort rate of approximately 15 events

per econd. The FACSCaliber possesses the following three distinct sort modes: single

cell, recovery and exclusion (Figure 16). The sort mode with the highest purity of

recovered cells is the single cell mode followed by the exclusion and recovery modes,

respectively. The sort mode with the highest yield (but lowest purity) is the recovery

mode, followed by the exclusion and single cell modes, respectively. By sacrificing

. th . f th highest post sort purities possible, the single cell mode was
recovery In e pursuit 0 e

. d Th se sorting parameters enabled the
used for all sterile, FACSCaliber assiste sorts. e

. II to be sorted in the minimum amount of time (on
maximum number of target ce s

I . was performed by flow cytometrically
average 60 minutes per sort). Post-sort ana YSIS
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} no sort

}no sort

ingJ ell Mode

Sort envelope

Recovery Mode

• Target cell

} no sort

"
')

'\

Exclusion I
I

I
I II

"oNontarget cell

;gore 16. How envelopes were sorted for each sort mode. In Single Cell Mode, a
sort occurred whenever a single target cell was identified in the sort
envelope. Envelopes containing more than one cell, even if a target cell,
were not sorted. In Recovery Mode, a sort occurred whenever a sort
envelope contained a tuget ceIl, even if a nontarget cell was also in the
envelope or a target cell was just outside the sort envelope. In Exclusion
Mode, a sort occurred only when a target cell was identified within the
defined sort envelope, no attempts were made to capture target cells

outside the sort envelope.
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zing 200~L of sorted sample .pnor to further process in .
I ) If g (i.e., performance of CFU

ay. a post-sort purity of ;:.900/.
• 0 was not obtained, then further

processing of the specimen was abort d M'e. tcroscope slides were prepared of. pre-sort
t-s rt pecrmens (CD34+ .ennched fraction and CAM+CD34+. or CAMCD34+

m el id progenitors, respectively) usin a c .g ytocentnfuge and counterstained with

Leuxosta: i her cienti fi ) .J IC as previously described (Figure 17). Leukocyte

di rential of prepared slides enabled fi .con irmauon of post-sort purities (kindly

pe rmed by Dr Sean F' .. arrier as previously described). A typical leukocyte differential

o pr - and po t- ort CAM+1-CD34+ I'dmye OJ progenitor is listed in Table Two.

r

nd

..
:1
"

I ny forming unit assay

To assess short-term hematopoietic potential, sorted CAM+CD34+ myeloid

progenitor cells from normal marrow or pooled buffy coats were plated in triplicate into

,I,
II
"

J ,I
"

35mm2 petri dishes containing 1 mL MethocultlMH4434 per dish (Methocult; StemCell

Technologies lnc., Vancouver, B.C., Canada). Methocult is a "complete" methlycellulose

medium containing recombinant human (rh) cytokines necessary for colony assays of

human cells [0.9% methylcellulose, 30% fetal bovine serum, 1% bovine serum albumin,

I<J' M 2-mercaptoethanol, 2 mM L_glutarnine, 50 ng/mL rh stem cell factor, 10 ng/ml,

rh GM-CSF and 10 nglmL IL-3, 3 units/mL rh erythropoietin in 70% lscove's DMEM]

Each dish received 1mL of cell suspension [500 sorted cells in 0.1 mL Iscove's media

(Mediatech)/mL
48
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A.

B. c. 'I

I

!"

igure 17. Morphological confirmation of myeloid progenitor sort purity. (A) Samples
were enriched for CD34+ cells using MACS (magnification 683X; bar = 15
um). (B) CD34+ myeloid progenitors expressing (magnification 640X, bar =
16 urn) or (C) not expressing (magnification 512X; bar = 20 I'm) the cell
adhesion molecule of interest were flow cytometrically sorted. Sort of
VLA-4+CD34+ myeloid progenitors derived from marrow shown.
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bk o. Leukocyte differential of pre- and post-sort CD34+myeloid progenitor cell preparations.
ul< y'f diff renUals of Leukostat stained slides of CD34+ ceOenricbed fraction (pre-sort) and flow
rlorn I lIy sorted CAM+<'CD34+ myeloid progenitors (po,t-,ort) Were reported as a percentage of

unted per slid e, A leUkocyte differential of a single ceOsort from marrow targeted at
It bijtbly' purined posl-sort specimens ofVLA-4+CD34+ and VLA-4"CD34+ myeloid progenitont dMpreUD~ .

Pre-Sort Post-Sort

II ype Observed
CD34+ Cell VLA-4+CD34+ VLA-4"CD34+
Enriched Myeloid Myeloid
Fraction Progenitors Progenitors

2 98 69. Myelobla t

15PI" m.!elocyte 4

3I Myelocyte, neutrophilic 6
t myelocyte, neutrophilic 9

Band n utrophil 13

Segm nted neutrophil 50

1o inophils (including young
form)

B ophil (including young
form)

35onocytes
2 106Lymphocytes

PLa.smacytes

2bl ts & BasophilicPronormo as
normoblasts

2. moblastsPol chromatic nor.
and Orthochromatic
normoblasts

"
'I

,
J

J
1,1

"
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A fter 14 days of incubation at 37°C in a humidified atmosphere of 5%
Methocultj. ill'

CO,:95% air, colonies were scored and typed as CFU-E, BFU-E, CFU-GM and

CFU-mix based on an atlas of human hematopoietic colonies developed by Eaves et al.

(Figures 18 and 19).59

Using the culture conditions outlined above, progenitors differentiate as they

divid with the result that after a finite and predictable incubation (i.e. 14 days) all cells

will have reached maturity and the colony will not increase in size any further. S9 This

feature of colony development allowed different stages of progenitor development to be

distinguishedaccording to the sizes of colony they ultimately generated. Thus the bigger

the colony, the greater the proliferative capacity and the more primitive the original

progenitor from which it arose. S9

CFU-E refers to those colonies which give rise to the smallest (less than 0.5 mm),

most rapidly maturing erythroid colonies." In the context of the CFU assays presented

herein, a colony was scored as a CFU-E colony 1) when it consisted of 1-2 clusters

containing up to a maximum of -100-200 erythroblasts and 2) when each cluster

contained a minimum of 8 erytbroblasts (Figure 18A). Erythroblasts are readily

discernible in methycellulose by their distinct reddish-orange hue due to their

hemoglobincontent (Figure 18A).s9

BFU-E refers to the immediate precursors ofCFU-E S9 I d c.. n or er ror a colony to

be scored as a BFU E . h d- , It a to contain at least 3 erythroblast clusters with each Icuster

consistingof -100 SOOhemozlobi .- emog obinized erythroblasts or a single colony >0 5 ... rnm III size

usually presenting with a "fried egg" holozv ff'i 'morp 0 ogy (FIgure 18B)59
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A.

1

,,,'.

-
igure 18. Microscopic characteristics ofCFU-E and BFU-E colony types. Sorted

CAM+/-CD34+ myeloid progenitors were plated into colony fonning units
assays. Colonies were scored according to standards set forth by Eaves et a1

59

as (A) CFU-E colonies (magnification 68X) or (B) BFU-E colonies
(magnification 4IX). Bar = 200 urn.

51



www.manaraa.com

'.

Figur 19. Microscopic characteristics ofCFU-GM and CFU-mix colony types. Sorted
CAM+!-CD34+ myeloid progenitors were plated into colony forming units
assays. Colonies were scored according to standards set forth by Eaves et aJ59
as (A) CFU-GM colonies (magnification 54X) or (B) CFU-mix colonies

(magnification 49X). Bar = 200 urn.
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re

- M lorries we re Scored on the b .
uloevres asis of their abilit t

and macrophages. A colon y 0 produce colonies of
. . y was scored as a CFU-GM

ntained minimum of 20 g I colony when it
ranu ocytes and/or macroI " phages (Figure 19A) 19

ru h wed a relatively hom . Typically
ogenous morph I.centra ~.. 0 ogy often with a more

n I"...central core of IIce s surrounded b IY a ess dense hal f" . 00 cells (Figure 19A) 59

. -rmx colonies refer to colonies hi h .
" . . W IC resulted from progenitor cells that gave

me containing mull' I I'IP e meages of cell CFU ". .. -mrx colonies are sometimes

U-GEMM (colony forming unit-granulocyte eryth "d, rOI , macrophage,

mega..karyocyte) to indicate the' I' I .ir mu tip e lineage potential 59 CFU" .. -mrx colonies were

red when th distiree isunct cell lineage types could be visualized by focusing up and

d wn under high power (Figure 19B)59

th

ri

54

Preparation of stromal cell layers

tromal cell layers for long term culture initiating cell (LTCIC) assays were

prepared from cells trapped on filters designed to remove cell clumps and other debris

from harvested marrow samples. Salvage of these filters (they are normally discarded as

waste) after a bone marrow harvest from a normal individual donating for allogeneic

transplant enabled normal human bone marrow stromal cells to be obtained. Filters were

flushed with DPBS to collect trapped cells. To deplete the RBC content, collected cells

were layered onto Ficoll-Paque® Plus at [25 mL diluted sample: 10 mL Ficoll-Paque®

Plus] and centrifuged at 500 x g for 30 minutes at RT according to a modified version of



www.manaraa.com

Boyum's method" The light density cells were washed three times with DPBS via

centrifugationat 615 x g for 5 minutes at RT. The resultant cells were admixed in

LTBMCmedium [lO-6M hydrocortisone, 12.5% horse serum (GibcoBRL) and 12.5%

fetalbovine serum (GibcoBRL) in alpha-minimum essential medium (alpha-MEM;

Mediatech)]at a final cell concentration of [106 cells/mL LTBMC media] and were

aliquotedat 5 mL per 25 em? flask to be seeded. The cultures are incubated at 33°C in a

humidifiedatmosphere of 5% CO2:95% air. After three weeks of culture with weekly

completemediumchanges, the cells were trypsinized, pooled, washed, and re-plated at a

ratioof two new flasks per one original flask; thus a stromal feeder layer consisting of

normalhuman stromal cells was established.

Longterm culture initiating cell assay

Long term culture initiating cell (LTCIC) assays, developed by Sutherland et al .,

wereestablished in order to measure the number of stem cells with long term in vivo

repopulatingpotential within sorted populations of CAM+CD34+ I·d .mye 01 progenitors

(Figure20) 13 LTCIC . .. assays enable quantrtation of human LTCIC content based on an

assessmentof the n b f clonozeniurn er 0 Conogernc cells present after 5-8 weeks in vitro.

Clonogeniccell t dou put epends on the presence of a stromal cell feeder I d .ayer an IS

linearly relatedto th .e input cell number over a wide range of cell .. .. concentrations.

Llmltmg dilution I'ana YSlS of clonogenic cell output enables quantitation of LTCICs or
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(~.~ .-t-4-Sorted CAM+CD34+ .~) myeloid progenitor

Harvest all cells in well and assay for CFU

!
I
I

J
"••

~=2::::::J::::.:=::L,--_-Irradiated Stroma

Incubate 5 weeks with weekly d cc d'ermree mg
!

~L_.p..c---Methylcellulose media specialized for
stimulating CFU formation

!
Enumerate CFU via microscopic examination of each well

Figure 20. Long term culture initiating cell assay.
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II ruent within the .mput cell populations 13 I th. . n e LTCIC
Input cell popular: assays presented

Ion was sorted .populatIOns of CAM+CD + .34 myelOId
p II

p inized normal human stromal cell Iayers from established LTBMC (
oreearan n I s see

trnma cell layers section) .on were Irradiated at 20 G (d . .y estroys radiation

hem t poietic stem cells while strom .al cells remain functionally intact) and

well flat-b nom microtiter tra (Fiys Fisher Scientific) at 6 X 104 cells per

, M2-1 OB4 cells (Batch F-12495 Am' T, encan ype Culture Collection ,

) were used as the stromal cell layer M2-IOB4 II .. ce s are a munne bone

mal cell line capable of maintain in I . .gong term human hematopoiesis in vitro

el as human marrow derived stromal layers 60 M2-IOB4 cell . di d. s were trra late

marrew

ted into 96 well flat-bottom microtiter trays at 3 X 104 cells per well. The

incubated for at least 24 hrs at 33°C in a humidified atmosphere of

% air to allow adherence of stromal cells. Cells to be assayed (sorted
•

'I" 4" myeloid progenitor cells) were plated in LTBMC media in dilutions of 3,

10, 0, 100, 00 and 1000 cells/well in replicates of 24 wells per dilution. An additional

plate of trornal cell received LTBMC media alone and served as a negative control.

Tb eultur were maintained for five weeks at 33°C in a humidified atmosphere of

% }.9 % air with weekly demifeeding by half volume complete LTBMC media

chan - t week five of culture, cells in each well were harvested via trypinsinization

and plated into FU assays. Since no significant difference (p>0.05) in LTCIC content

b
. d . d LTCIC content between five and eight week

been demonstrated III eterrnille
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cultur ,five weeks of culture was chos 13

en. On day 14 of the CFU assay portion of the

as ay, wells were scored as ith ..
ei er posrtrve (colonies observable) or negative (no

b ervable colonies)

The number of stem cells present per input cell was determined using Poisson

tati ti which states that if the average number of long term culture initiating cells

plated per well equals one, then the probability of no positive wells is

p(O) =( (e-1)(IO)]1 01 = (l/e)(l) = lie = 0.37

u the probability of finding ~ I positive well (i.e. the probablity of not finding 0

po itive wells) = 1-0.37 = 0.63; that is, 63% of the wells plated will be positive when one

T IC is plated per well. By plotting the number of cells plated per well by the
')

'I
percentage of positive wells, the number of cells corresponding to 63% positive wells

of LTCICs per sorted cell plated was then converted to LTCIC/106 sorted cells for all

,
J

!
'.

was interpolated as the number of cells containing one LTCIC (Figure 21). The number

comparative analyses.

VLA-4 adhesion assay

The adhesion of sorted populations of VLA-4+CD34+ myeloid progenitors to

. ed using a modified version of Shimizu et al. ' s
immobilized fibronectm (FN) was measur

adhesion assay.,,62 Typically static adhesion assays involve five steps (I)

.' lis (2) addition of 5lCr-labelled target
immobilization of target ligand to microliter we ,

f activating agents, (3) initiation of adhesion by
cells at 4 DC in the presence or absence 0
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Figure 21. Determination of number LTCIC per 106 sorted CAM+I- CD34+ myeloid
progenitor cells. Myeloid progenitors were flow cytometrically sorted from
either pooled buffy coats or hematopoietically normal marrow. These highly
purified cell populations (post-sort purity >90% in all cases) were plated in
limiting dilutions ranging from 3 to 1000 cells/well (replicates of 24 per
dilution) in accordance with performance of the LTCIC assay (Figure 20).
According to Poisson statistics, the number of sorted myeloid progenitors
corresponding with 63% positive wells (i.e., wells containing at least I colony)
reflect the number of sorted myeloid progenitors containing one LTCIC. Using
the above representative experiment as an example, 63% of the wells were
positive when 19 sorted myeloid progenitor cells were plated per well. In other
words, there were 52,632 LTCIC per 106 CAM+I-CD34+ myeloid progenitor
cells sorted.

100

80

60 ·.····40

10(1) 10(2) 10(3)

Sorted CAM+1- CD34+myeloid progenitors plated/well
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t 37"C (4) washing away nonadherent cel1s, and
increasingtemperature 0 ,

•. 01 adherent cells by lysing them and measuring "Cr y emissions. A
(5)determmmg yo

. . dhesion assay was developed in which cells were labelled with a
nonradIOactivea

. gated mAb and analyzed flow cytometrically instead of using 51Cr
fluorochromeconju

II . t The remaining steps of both assays were carried out
labellingand a scinti anon coun er.

in thesame manner.

Prior to execution of the VLA-4 adhesion assay, the concentration ofFN per wel1,

typeof microtiter plate, and incubation duration was optimized using protocols suggested

byMobley et al. and described in detail herein.F Human plasma fibronectin (FN; >95%

pureby sodium dodecylsulfate polyacrylamide gel electrophoresis, mycoplasm negative

byMYCOTECTT"System and DNA staining, functional performance verified by cel1

attachmentand spreading assays using BHK-21 cel1s performed by manufacturere;

GIBCOIBRL,Grand Island, NY) was sequential1y diluted at [2 mg/ml.], [200 ug/ml.],

[20ug/ml.], [2 ug/ml.], [200 ng/mL], and [20 nglmL]. Fifty microliters of each dilution

waspipeted into seven rows of either a 96-wel1 tissue culture-treated microtiter plate

(CostarCorporation, Cambridge, MA) or a 96-wel1 ELISA-treated microtiter plate

(Nunc,Naperville, IL) with the eighth row left empty for use as negative control wel1s.

FinalFN concentrations per well were 100 ug/well, 10 ug/well, 1 ug/well, 100 ng/wel1,

lOng/well, and 1 ng/well. Plates were covered and incubated for 1 hour at RT

Unboundligand h d f II· .was was e rom we s Via several successive washes with 200 ul,

PBS/HSAbuffer [PBS with Ca2+ and Mg2+, (v/v) 0.5% human serum albumin US.P,

pH~72 (Th .. erapeunc AJpha Corporation, Los Angeles, CA)). Remaining unbound
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, bi d'ng sites were blocked by incubation with PBS/BSA buffer [PBS with Ca
2

'

proteln- In I

& Mit and 2.5% (w/v) bovine serum albumin, pH=7.2] for 2 hours at n°c. The wells

h d
ith 200 OIL PBS/HSA and incubated with 50 ul, of PBS/HSA buffer;, 30

werewas e WI e-

, t 40C pooled buffy coat samples enriched for CD34+ hematopoietic progenitor
minutesa '
cellswere resuspended in PBS/HSA buffer at a concentration of [10

3
cells/ul-]. A small

fraction(200 flL) of CD34+ HPCs was reserved for flow cytometric analysis of viable

VLA-4+CD34+myeloid progenitor cell content as previously described, Cells were plated

intriplicate onto FN-coated and blank (not FN-coated) wel1s at 50 flLlwell (50,000

cells/well). Cell adhesion to immobilized FN was initiated by raising the temperature to

370Cfor 10, 20, 30, 40, 50, 60, and 120 minutes or overnight in a humidified atmosphere

of 5% CO
2
:95% air (optimization of incubation time). Nonadherent cel1s (i.e. free in the

solution)were collected via three gentle successive washes with 200 ul, PBSIHSA buffer

perwell and pooled. Adherent cel1swere harvested via trypsinization Viable

nonadherentand adherent cells per wel1 were enumerated via the trypan blue exclusion

assay. Nonadherent and adherent cel1s from each well were labelled for flow cytometric

analysisof VLA-4, CD34 and CD45 expression as previously described.

The percentage of pre-binding assay sample (original1y seeded cell preparation of

50,000cells/well), nonadherent cells (free in solution after initiation of adhesion), and

adherentcells (bo d ft ... . .'un a er imtianon of adhesion) which were viable VLA-4+CD34+

myeloidprogenito d . drs was etermme flow cytometrically as previously described. The

numberof viable cell ithi h biS WI 10 t e pre- inding assay, nonadherent cel1 and adherent cel1

sampleswere quanti tat d .I e via the trypan blue exclusion assay, The absolute number of
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Vjable Adherent VI A_4+CD34+ myelojd progenito,:, )
(ViableVLA-4+CD34+myeloid progenitors (pre-adhesion assay) x I00 ~

% viable adherent
VLA-4+CD34+

myeloid progenitors

. A_4'CD34' myeloid progenitors contained within the pre-binding assay,
viableVL

II
d dherent cell samples was determined from the following equation:

nonadherentce an a
. it - (o/VLA_4+CD34+myeloidprogenitors)(O.OI)(total cells)

VLA_4'CD34+myelOidprogem ors - /0

f iabl VLA-4+CD34+ myeloid progenitors adhering to fibronectin was
Thepercentage0 via e

calculatedfrom the following equation:

Thepercentageof viable nonadherent VLA-4+CD34+ myeloid progenitors was calculated

fromthe following equation:

(
--YiBble NonadherentVI ,A-4+CD34+myeloid progenitors ) % viable nonadherent
ViableVLA-4+CD34+myeloidprogenitors (pre-adhesion assay) x 100 ~ VLA-4+CD34+

myeloid progenitors

The percentageof viable nonadherent VLA-4+CD34+ myeloid progenitors was

calculatedonly during the optimization adhesion assay experiments to demonstrate the

abilityto track the location of VLA-4+CD34+ myeloid progenitors as either free in

Theoptimal parameters determined for the adhesion assay (n=3) were as follows

FN concentrationof 1 ug/well, 96-well ELISA-treated microtiter plate (Nunc), and

incubationat 37°C for 1 hour (Figure 22), In all of the adhesion assays described

herein,the same lot of FN and NUNC plates were used to minimize alterations in

adhesiondueto batch-to-batch differences in FN or plate preparations.

FN [20 ng/ul, PBS with Ca2+and Mg2+]was dispensed at 50 ilL/well into 96 well

plates(Nunc) .th
WI one row of wells left empty to serve as negative controls. The plates

..,
solutionor bound to FN.
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RT Unbound FN was removed by several successive
were incubatedfor one hour at .

. h PBS/HSA buffer. Protein-binding sites in ligand-coated wells and wells
washesWit

.' 0 II'gandwere blocked by incubation with PBSIBSA buffer for 2 hours at
recelvmgn

370C. Thewells were washed with 200 JlL PBS/HSA and incubated with SO JlL of

PBS/HSAbuffer ~ 30 minutes at 4°C. Pooled buffy coat samples were enriched for

CD34' myeloid progenitor cells (Figure 4). A small fraction of cells was reserved for

flowcytometricanalysis ofVLA-4+CD34+ orCD34+ myeloid progenitor cell content as

previouslydescribed. Cells were resuspended in PBSIHSA buffer at a concentration of

[10' cells/pl.]. Treatment groups were plated in replicates of four at SO JlLlwell (50,000

cells/well). Group one was plated onto blank, non-coated wells (served as nonspecific

bindingcontrols). All remaining groups were plated onto FN coated wells. Group two

wasplatedin PBS/HSA buffer alone. Group three received 6 JlLl well mAb

(anti-CD49d-FITC;lmmunotech) against the 0:4 chain of the VLA-4 a4f31 heterodimer.

Groupfour received an immunotype identical mAb (lgG2a-FITC; Immunotech) which

doesnotbind either chain of the VLA-4 heterodimer (served as an isotype identical,

nonspecificbinding control for mAbs). Cell adhesion to the immobilized FN was

initiatedb ., thy raising e temperature to 37°C for 60 minutes in a humidified atmosphere of

5% CO 950/. . Thz- 0 air. e number of viable CD34+ cells not adhering to fibronectin was

determinedby the t bl 'rypan ue exclusion assay as previously described. The number of

viableCD34+ I'd .mye 01 progemtor cells binding FN per well was dete ' d d 'rmine as escnbed

above.Adherent cell h 's were arvested via trypsinization labelled for flow cyt ,, ometnc
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. f Viable VLA-4+CD34+ Myeloid Progenitors
. c:;:n:ce:n:t:ra:t:io:n~-~A:d:h:e=s=lo=n~o -=f=-:: ~==-1A. FibronectlD
lOll

8

[J Median
TMinimumlMaximum

'0 60c
:le
~
:!<. 40•
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oIL_~-:--:::-;OO=1--;;O::;O:;"I--;O;;-I;--lljjo;-llii.O.'OO--;I~OO;(.O;-""ffiwk a . . .
[Fibronectin ",g1wellj

B. Incubation Duration - Adhesion of Viable VLA-4+CD34+ MYHrogenitors

lOll

2

• Median

TMinimumlMaximum80 •

'0 60c
:le
~
:!<. 40•

01L---IO-~2:-:0---::'30:-""';;47.0:---:5~O:---:6:;:O" ~ 24 hours

Incubation Duration (minutes)

Figure 22. Optimization of adhesion assay. To determine the optimal concentration of
fibroneetin (FN), adhesion assays (n=3) of pooled buffy coat samples enriched
for C034+ cells were performed using concentrations of FN ranging from
0.001 to 10 ug FN/well (A). On average the highest percentage of
VLA-4+C034+ myeloid progenitors bound to FN concentrations> 0.0 I flg
FN/well (A). A concentration of I ~ FN/well was chosen from the plateau
phase of the graph (indicated by asterisk) for all adhesion assays. To determine
the optimal incubation time, adhesion assays (n=3) of pooled buffy coat
samples enriched for C034+ cells were performed at incubations ranging from
10 minutes to 24 hours (B). The greatest percentage ofVLA-4+C034+
myeloid progenitor cells bound after I hr of incubation (indicated by asterisk).
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an I i 0 LA-4, CD34 and C045 .expressIOn as .prevIOusly described Th
of i bl dherent VLA-4' C034' C . e percentage

or 034+ my I id. e 01 progenitors was determined
d crib d ab ve. as

tati ti I analy

II stati tical analyses and higrap ICSwere generated using one of the following

ftware programs, alone or in combination as dictated by th I" . .e app icatron: Statistica for

'Ii indow ( tatsoft, Tulsa, OK), Lotusl-2-3 version 4 (Lotus Development Corporation),

or Harvard Graphics version 3.0 (Software Publishing Corporation, Santa Clara, CA).

The following discussion of statistical tests, their applications and assumptions

was obtained from the Statistica for Windows owner's manual supplied with the

application software. The Student's t-test for dependent samples (paired T-test) was used

for all comparative analyses of paired marrow and blood samples. This statistic enables

the comparison of means among variables (e.g. mean CAM expression per CD34'

myeloid progenitor between blood and marrow) measured in the same sample (e.g. same

individual's blood and marrow). The null hypothesis of the paired t-test states that there

is no diffeence between the meanS of the measured variable. For example, the null

h
thesi f th . d and blood samples states that there is no difference

ypo esis 0 e parre marrow

b th
. f VLA 4 per myeloid progenitor collected from the

etween e mean expresSIOn 0 -
. . bl d If the null hypothesis were true,

marrow and those collected from the clrculatmg 00.

. VLA-4 expression per myeloid progenitor cell)
then any measured differences (mean
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lik ly be attributable to measurement errors which would be normally
wouldmost 1 e

. d nd a mean of zero. If sufficient evidence for rejecting the null hypothesis
distnbute arou

c: d (i e ps O05) then any measured differences between the two sample
were toun ." _. ,

populationmeans would most likely be attributable to true differences in the population

means.Thus a p-value of ,;0.05 would indicate that, at least 95% of the time, differences

observedin the experiment reflect true differences in CAM or CD34 expression between

blood andmarrow myeloid progenitors. The paired t-test assumes that the variables

underanalysisare normally distributed and homogeneity of variance. In order to test for

normality,the Shapiro-Wilks W test was performed on each variable prior to paired t-test

analysis. This statistic is the preferred test of normality as compared with other tests of

normality,such as the Kolmogorov-Smimov test. In both the Shapiro-Wilks and

Kolmogorov-Smimovtest the null hypothesis states that the respective distribution is

normal;thus, a significant W or D statistic, respectively, would lead to rejection of the

null hypothesisthat the variable is normally distributed. In order to test for homogeneity

of variance,the Levene Test was performed on each variable prior to paired t-test

analysis. In this test, analysis of variance for each dependent (measured) variable is

perfonnedon the absolute deviations of the values from the respective group means.

null hypothesi f th Lso e evene test states that the variability between variables is

homogeneous If . .fi. a sigm icant p-value was obtained (i.e., p,;O.05), then the null

hypothesisof horn . f .ogenerty 0 variance was rejected.

The

Analysisof CFU (b .assays su types of colonies formed, total colonies formed)

LTCICassays(LTCIC 'content of sorted subsets) and binding assays was ...,, performed
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· f riance (ANOVA) for multiple measures. In general, the purpose of
usinganalystS0 va

ANOVAis to test for significant differences between sample means; however, as the

nameof this test implies, this test actually compares the variances of each sample. Under

the null hypothesis, the variance estimated based on within-group variability should be

aboutthe sameas the variance due to between-groups variabilty. For example, the

variabilityof the total number colonies formed/LO" cells plated (within-group variability)

shouldbe about the same as the variability between the total number colonies formed/l O·

sortedcellsof marrow and blood (between-groups variabilty). Rejection or failure to

rejectthe null hypothesis of the ANOVA test follows the same criteria as previously

describedfor the Student's t-test; that is, a significant F statistic (';0.05) would lead to

rejectionof the null hypothesis with 95% confidence that the differences measured in the

experimentreflect true population differences. Assumptions of the ANOV A test include

normaldistribution and homogeneity of variance of the dependent (measured) variables.

In general,ANOVA analysis is robust against violations of the assumption of normality

andhomogeneityof variance when 1) N;> 10 and 2) the means of each group do not

correlatewith the standard deviations across groups, respectively. Normality and

hom . f .ogeneity 0 variance for each dependent variable was tested using the Shapiro-Wilks

andLevenetest, respectively, as previously described.

Afterobtaining a significant F statistic (';0.05) from ANOVA, it was important to

detenninewho h .
IC groups (vanables) were specifically different. Performance of a series

of t-teststo com II . .pare a possible pam of means would capitalize on chance m . th, earung at

reportedprob bT .a I ities would actually overestimate the statistical significances of mean
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(T
e I error) Post hoc comparison techniques specifically take into account

differences yp .

the fact that more than two samples were taken. In most post hoc comparisons, the

meansof all variables are sorted into ascending order. For each pair of means, the

probabilityunder the null hypothesis of obtaining differences between means of this

magnitude(or greater) given the respective number of samples is then calculated.

Finally, the actual probabilties based on the distribution of the calculated (studentized)

rangeof statistics is calculated and reported. For analysis of specific effects between

variablesdeemed significantly different via ANOVA analysis, Newman-Keuls Test and

CriticalRangeswas utilized The Newman-Keuls Test, like ANOVA, is based on the

studentizedrange statistic. Computationally, the means were sorted into ascending order

andtheprobability under the null hypothesis (no differences between means in the

population)of obtaining differences between means of this (or greater) magnitude, given

the respectivenumber of samples, was determined.

In those analyses in which the assumptions of the parametric tests (paired t-test,

ANOYA, etc.) were violated (e.g. one or more of the variables was not normally

distributed)th .. I, e nonparametnc equrva ent to the parametric test was utilized for

statisticalanalysis Th W·I ... e 1 coxon matched pam test IS a nonparametric alternative to the

pairedt-test(t te t f d d- s or epen ent samples). The Wilcoxon test assumes that the variables

underexamin tia IOnwere measured on a scale which allows rank ordering of the

observationsbas d h varie on eac variable and that allows rank ordering of the differences

betweenvariables.

t-test.
The obtained p-value is interpreted just as that of the paired samples

TheKruskal-Wallis ANOVA b .y ranks IS a nonparametric alternative to ANOV A.
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Thistest assumes that the variable under consideration is continuous and was measured

on at least an ordinal scale. This test assesses the hypothesis that the different samples in

the comparisonwere drawn from the same distribution or from distributions with the

samemedian. If a significant difference was found using the Kruskal-Wallis ANDY A,

theMann-WhitneyU test, a nonparametric alternative to the t-test was used. In order to

circumventthe comrnittance of Type I error the Bonferroni method was employed to

determinean acceptable p-value. In this technique, the acceptable p-value of 0.05 was

dividedby the number of comparisons being performed with the Mann-Whitney U test.

In summary, when the measured variable was normally distributed the parametric

test dictatedby the experiment design (t-tests, ANOYA, or Newman-Keuls test) was

used. When the measured variable was not normally distributed the nonparametric tests

wereapplied(Mann-Whitney U test, Kruskall Wallis ANOV A by ranks, or Wilcoxon

matchedpairs test) as dictated by the design of the experiment.

69



www.manaraa.com

RESULTS

im 1 differential expression of CAMs b twe een marrow and blood

lstrlbution of CAM expressing cells within the C'D34+ loid .mye 01 progenitor

populations of marrow and blood Nucleated cell fractions of paired marrow and blood

from either granulocyte-colony stimulating factor (G-CSF) mobilized patients

or n rm .1 d n rs were enriched for CD34+ cells (Figure 4). The paired specimens were

im

I b led with monoclonal antibodies (mAb) against CD34, CD45 and one of the following

cell adh ion molecules (CAMs) under study: homing-associated cell adhesionmolecule

). very late antigen (VLA-4) or L-selectin (Appendix 4). The individual cell

types in each ample were differentiated using a method similar to the one originally

reported by telzer et al. (Figure 9). S7 The myeloid progenitor population was gated and

aJ zed for the coexpression of each CAM (RCAM, VLA-4 or L-selectin) with CD34

igure 10).

o ignificant difference (p>005) was detected between the percentage ofCD34'

.' . HCAM or L-selectin (paired t-test analysis) between
m eloid progenitors coexpressmg

d (F
. 23A) Marrow derived myeloid progenitors from

normal marrow and bloo 19ure .
. ( -0 0}7'Wilcoxon MatchedPairs Test)

. .fi tly hIgher p-. ,
normal donors expressed a Slglll rcan
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Figure 23. Qualitative expression ofHCAM, VLA-4, L-seleetin and CD34 on myeloid progenitors
between marrow and blood samples. Paired samples of marrow and blood from either
nonnal donors (n~7) or patients mobilized with G-CSF (n=7) were enriched for CD34+
cells. Blood (gray) and marrow (white) myeloid progenitors were examined flow
cytometricaIly for their coexpression of cell adhesion molecules: HCAM, VLA-4 or
L-selectin with CD34; or their expression of CD34. In normal donors (A), the
percentage of marrow derived myeloid progenitors expressing CD34 was significantly
greater (p=O.OI7) than on circulating myeloid progenitors. InG-CSF primed patients
(B), the percentage of CD34+ myeloid progenitors coexpressing HCAM was
significantly lower (p=O.OI4) on myeloid progenitors residing in the marrow than those
in circulation. Significant differences are indicated with asterisks.
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t
e (mean±2 x standard error of mean (s.e.m.); 91±2%) ofCD34 than their

percenag

circulatingcounterparts (68±11%; Figure 23A).

In G-CSF mobilized patients, no significant difference (p>005) was found in the

percentageof CD34+ myeloid progenitor cells coexpressing VLA-4, L-selectin or CD34

betweenmarrow and blood (Figure 23B). However, the percentage (mean±2 x

s.e.m.%)ofCD34+ myeloid progenitors coexpressing RCAM was significantly lower

(p=O.OI4;paired t-test) on those residing in the marrow (74±8%) than those in

circulation(89±7%; Figure 23B).

No significant difference (p>O.05) was detected between blood specimens derived

from normaldonors and those derived from G-CSF mobilized patients with regard to the

percentageof myeloid progenitors expressing HCAM, VLA-4, L-selectin and CD34

(Figure24). The percentage of marrow derived CD34+ myeloid progenitors

coexpressingHCAM was significantly higher (p=O.002; Student's t-test) on myeloid

progenitorsfrom normal donors than on those from G-CSF mobilized patients

(Figure25). No other significant differences between normal donor and G-CSF

mobilizedpatient marrow derived myeloid progenitors in terms of their coexpression of

VLA-4 or L-selectin with C034; or expression of CD34 alone (Figure 25).

CAMexpression per CD34+myeloid progenitor cell. To quantitate the expression

of CAM or CD34 per CD34+ myeloid progenitor cell, the mean peak channel

fluorescenceof e h k .thiac mar er WI III the CD34+ myeloid progenitor gated population was

determined(Figu 12) Thre . e mean channel fluorescence was compared with the QSC
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Figure 24. Comparison of blood specimens derived from normal donors and G-CSF mobilized
patients for qualitative differences in myeloid progenitor cell expression ofHCAM,
VLA-4, L-selectin and CD34. Blood samples obtained from normal donors (n=7;
white) or patients mobilized with G-CSF (n=7; gray) were enriched for CD34+ cells
(same data set as presented in Figure 21). Myeloid progenitors were examined flow
cytometrically for their coexpression of cell adhesion molecules: HCAM, VLA-4 or
L-selectin with CD34; or their expression of CD34. No significant difference (p>Q.05)
was detected between blood specimens derived from normal donors and those derived
from G-eSF mobilized patients with regard to the percentage of myeloid progenitors
expressing HCAM, VLA-4, L-selectin and CD34.
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Figure 25. Comparison of marrow specimens derived from normal donors and G-CSF mobilized
patients for qualitative differences in myeloid progenitor cell expression of HCAM,
VLA-4, L-selectin and C034. Marrow samples obtained from normal donors (n=7;
white) or patients mobilized with G-CSF (n=7; gray) were enriched for C034+ cells
(same data set as presented in Figure 21). Myeloid progenitors were examined flow
cytomettically for their coexpression of cell adhesion molecules: HCAM, VLA-4 or
L-selectio with C034; or their expression of C034. The percentage of marrow derived
CD34+ myeloid progenitors coexpressing HCAM was significantly higher (p=O.002) on
myeloid progenitors from normal donors than on those from G-eSF mobilized patients.
Significant differences indicated by asterisks.
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· ression standard curves generated for each experiment and the antibody
bead [inear reg

.. it (Abc) units per CD34+ myeloid progenitor was extrapolated
bmdmgeapacr y

(Figure14).

The expression of CD34 per myeloid progenitor cell (mean Abc units ±

) of normal donor marrow (32113±1 0681) was significantly greater2 x s.e.m.

(p~.0036; paired t-test) than those in circulation (13640±8976), an average decrease of

58%per circulating CD34+ myeloid progenitor (Figure 26A). No significant difference

(p>O.05)between normal donor marrow and blood was detected in HCAM, VLA-4 or

L-selectinexpression per CD34+myeloid progenitor cell (Figure 26A).

In G-CSF mobilized patients, marrow derived CD34+ myeloid progenitor cells

expressedsignificantly greater (p=0.0007) VLA-4 per cell (mean Abc units ± 2 x s.e.m.;

12966±3482)than those circulating in the blood (7097±3523), an average decrease of

45%per circulating CD34+ myeloid progenitor (Figure 26B). No significant difference

(p>O.05)between G-CSF mobilized marrow and blood was detected in RCAM,

L-selectinor CD34 expression per CD34+ myeloid progenitor cell (Figure 26B).

CD34+ myeloid progenitors expressed significantly more (p=O.032; Student's

t-test) L-selectin per cell than those derived from G-CSF mobilized patients (Figure 27).

No significantdifference (p>0.05) in the expression ofHCAM or L-selectin and CD34 ,

or CD34alone per blood derived myeloid progenitor cells was detected (Figure 27). No

significantdiffer (0 0 )ence p> . 5 was detected between marrow specimens derived from
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Figure Ui. Quantitative expression of HCAM, VLA-4, L-1;electinand CD34 on myeloid progenitors.
to norroal donors (A). myeloid progenitor expression ofCD34, as reflected by antibody
binding capcity (Abc) units, was significantly higher (p-=O.0036)on those residing in the
marrow (while) than on those in circulation (gray). InG-CSF primed patients (B),
drcalating CD34+ myeloid progenitors expressed significantly less (p=O.0007)VLA-4
per cell than those residing in \be marrow. Significant differences indicated by asterisks.
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Figure 27.Comparison of blood specimens derived from normal donors and G-CSF mobilized
patients for quantitative differences in myeloid progenitor cell expression of HCAM,
VLA-4, t-setecnn and CD34. Blood samples obtained from normal donors (n=7; white)
or patients mobilized with G-CSF (0=7; gray) were enriched for CD34+ cells (same data
set as presented in Figure 26). Myeloid progenitors were examined flow cytometrically
for their coexpression of cell adhesion molecules: HCAM, VLA-4 or L-seleetin with
CD34; or their expression of CD34. CD34+ myeloid progenitors from normal donors
expressed significantly more (p=O.032) L-selectin per cell than those derived from G-CSF
mobiliZed patients. Significant differences indicated by asterisks.
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CD34+ CD34+ CD34+
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• Median 025%-75% Normal Donors
T MioimumlMaximum iii 25%-75% G-CSF Mobilized Patients
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d those derived from G-CSF mobilized patients with regard to per cell
nonnal donors an

. fHCAM, VLA-4 or L-selectin with CD34; or CD34 expression alone
expresslOn0

(Figure 28)

if im 2· clonogenic potential and long term culture initiating cell content of
Speci IC at .

marrow and blood

CFUassays of CAA·rCD34+ myeloid progenitor populations from marrow and

blood Nucleated cell fractions of marrow or pooled buffy coat specimens from normal

donors were enriched for CD34+ cells (Figure 4). The specimen was labelled with mAb

against CD34 and one of the following cell adhesion molecules: homing-associated cell

adhesion molecule (RCAM), very late antigen (VLA-4) or L-selectin (Appendix 4). The

labelled sample was analyzed flow cytometrically for the presence of CAM+'-CD34+

myeloid progenitors (Figures 9 and 12). The flow cytometer was directed to sort only

those cells which displayed the following criteria: low side scatter (indicating small size

and minimal cellular complexicity), CD34+ and CAM+ (Figure 15). Only samples whose

post-sort purity was ;,90% (as determined by flow cytometric analysis of sorted samples)

were used to plate CFU assays as summarized in Table Three. After 14 days of culture,

the CFU cultures were examined and the number ofBFU-E, CFU-E, CFU-mix and

CFU GM colonies were enumerated via microscopic inspection (Figures 18 and 19).
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Figu", 28. Comparison of marrow specimens derived from normal donors and G-eSF mobilized
patients for quantitative differences in myeloid progenitor cell expression of HCAM,
VLA-4, L-selectin and C034. Marrow samples obtained from normal donors (n=7;
white) or patients mobilized with G-eSF (n=7; gray) were enriched for CD34+ cells
(same data set as presented in Fignre 24). Myeloid progenitors were examined flow
cytometrically for their coexpression of cell adhesion molecules: HCAM, VLA-4 or
Leelectin with CD34; or their expression of CD34. No significant difference (p>O.05)
was detected between marrow specimens derived from normal donors and those derived
from G-CSF mobilized patients with regard to per myeloid progenitor cell expression of
HCAM, VLA-4, L-selectio and C034.
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· . f rt d CAM+CD34+myeloidprogenitorsbased on po,t-
P and post-sort puntles 0 so en- - 2 %Table I . AUpercentage,are pre,ented a' mean± x s.e.m. e ,

,ort FACS anay"'.
Pooled Buffy Coats

Myeloid Normal
Progenitor Marrow

Post-sortSubset N Pre-sort Post-sort N Pre-sort

10 32± 10% 98±2% 6 34 ± 14% 97±2%
HCAM+CDW

VLA-4+CD34+ 10 33 ± 16% 97±2% 6 38 ± 24% 96±4%

VLA·4'CDW 9 14±6% 98± 1% 3 14 ± 10% 97±4%

L-selectinTD34+ 10 20± 10% 96±2% 5 30 ± 16% 92±2%

L-selectin'CD34+ 9 22± 10% 97±2% 3 16± 6% 97±2%

Bloodderived CAM+!'CD34+myeloid progenitors produced a significantly greater

(p=O.00008; ANDV A) total number of colonies than their respective marrow

counterparts(Figure 29). Newman-Keuls analysis for specific differences are

summarizedin Table Four. HCAM+CD34+ myeloid progenitors sorted from normal

bloodproduced a significantly greater (p=0.013) total number of colonies (391±128;

mean±2xs.e.m.)than those derived from marrow (202±68; Figure 29 and Table Four).

BloodderivedVLA-4' and Lselectirr CD34+ myeloid progenitors produced a

significantlygreater total number of colonies (310±170, p=0.031; and 355±35,

p=O.0007; respectively) than their marrow counterparts (139±44 and 99±43, respectively;

Figure29 and Table Four).
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L-selectin+

I-setecnn

K J Test of total colonies formed bv blood versus marrow derived CAM+"
Table Four. Newman- ltor s N S indicates no significant difference (p>o.05) was found between the

34+myeloid progem ors. ., . .
CD . bl . therwise the specific p-vaJue " listed,
twO vana es: 0 •

BloodDerived
CD34+Myeloid
Progenitor Subset BCAM+

Marrow Derived CD34+ Myeloid Progemtors

No significant difference (p>O.05) was detected in the total number of colonies

L-selectin'

formed between sorted CD34+myeloid progenitor subsets derived from blood (n=20)

regardlessof coexpression ofRCAM, VLA-4 or L-se!ectin with CD34 (Figure 30).

Therewas no significant difference (p>0.05) in the total number of colonies formed by

marrowderived CD34+ myeloid progenitors also RCAM., VLA-4+/· or Lsselectin'"

(Figure31).

No significant difference (p>O.05) in colony type distribution (i.e., %CFU-E

versus%BFU-E, etc. of total colonies formed) was found between blood and marrow

derivedHCAM+,VLA-4', Lselectin" or Lvselectin CD34+ myeloid progenitors

(Figures32-35). Marrow derived VLA-4+CD34+ myeloid progenitors produced a

s' .f19U1lcantlygreater percentage (p=O.013; Student's t-test) of CFU-GM colonies

(24±110;.. 2 ..., mean ± x s.e.m.%) than their circulating counterparts (4±2%; Figure 36).
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Figure 30, Total colonies formed from blood derived CAM+/-CD34+ myeloid progenitors.
There was no significant difference (p>O.05) in the total number of colonies formed
between sorted CD34+ myeloid progenitor subsets derived from blood (n=20)
regardless of coexpression of HCAM, VLA-4 or L-seleclin with CD34.
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Figure 31. Total colonies formed from marrow derived CAM+I-CD34+ myeloid progenitors. There
was no significant difference (p>O.05) in the total number of colonies formed between
sorted CD34+ myeloid progenitor subsets derived from marrow (n=38) regardless of
coexpression ofHCAM, VLA-4orL-selectin with CD34.
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Figure 32. Comparison of CFU colony distribution between blood and marrow derived
HCAM+CD34+ myeloid progenitors. CD34+ myeloid progenitors coexpressing HCAM
were flow cytometrically sorted from blood and marrow specimens derived from normal
donors and plated into CFU assays. No significant difference (p>O.05) in colony type
distribution (represented as a percentage of total CFU colonies scored) was found
between blood (gray; n=20) and marrow (white; n=38) derived HCAM+CD34+ myeloid
progenitors.

85



www.manaraa.com

100

80
"C

"t-eo
OJ

'"'" 60
"'=eo
Q
U-.....eo
f-;...eo
~•

CFU-E BFU-E CFU-GM CFU-mix
Colony Type Scored from VLA-4-CD34+ Myeloid Progenitors

T2xs.e.m. • Mean Blood o Mean Marrow

Figure 33. Comparison of CFU colony distribution between blood and marrow derived
VLA-4-CD34+ myeloid progenitors. CD34+ myeloid progenitors not expressing
VLA-4 (that is, VLA-4-) were flow cytometrically sorted from blood and marrow
specimens derived from normal donors and plated into CFU assays. No significant
difference (p>O.05) in colony type distribution (represented as a percentage oftotaI
CFU colonies scored) was found between blood (gray; n=20) and marrow (white;
n=38) derived VLA-4-CD34+ myeloid progenitors.
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Figure 34. Comparison of CFU colony distribution between blood and marrow derived
L-selectin+CD34+ myeloid progenitors. CD34+ myeloid progenitors coexpressing
L-selectin were flow cytometrically sorted from blood and marrow specimens derived
from normal donors and plated into CFU assays. No significant difference (p>O.05) in
colony type distribution (represented as a percentage of total CFU colonies scored) was
found between blood (gray; n=20) and marrow (white; n=38) derived L-selectin+CD34+
myeloid progenitors.
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Figure35. Comparison of CFU colony distribution between blood and marrow derived
L-selectin-<::D34+myeloid progenitors. CD34+ myeloid progenitors not expressing
L-seleetin (that is, L-selectin-) were flow cytometrically sorted from blood and marrow
SPecimensderived from normal donors and plated into CFU assays. No significant
diflerence (p>O.05) in colony type distribution (represented as a percentage of total CFU
coloniesscored) was found between blood (gray; n=20) and marrow (white; n=38) derived
L-selectin-<::D34+myeloid progenitors.
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Figure 36. Comparison of CFU colony distribution between blood and marrow derived
VLA-4+CD34+ myeloid progenitors. CD34+ myeloid progenitors coexpressing VLA-4
were flow cytometrically sorted from blood and marrow specimens derived from normal
donors and plated into CFU assays. Marrow (white; n=38) derived CD34+ myeloid
progenitors coexpressing VLA-4 produced a significantly greater (p=O.013) percentage
of CFU-GM colonies than their circulating counterparts (gray; n=20). Significant
differences indicated by asterisks.
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90

In blood samples, the percentage of total colonies comprised of CFU-E, when

. between sorted CAM+1'CD34+ myeloid progenitors, was not significantly
companng

different(Figure37A). Blood derived CD34+ myeloid progenitors coexpressing

L_selectinformed a significantly lower (p=0.002; ANOVA) percentage ofBFU-E

coloniesthan all other sorted CAM+1-CD34+ myeloid progenitors (Figure 37B); while

fanninga significantly greater (p=O.004; ANOVA) percentage of CFU-GM colonies

(Figure38A). The Newman-Keuls test was used to determine the specific differences

betweensortedCAM+CD34+myeloid progenitors with regard to the percentage of

BFU-Ecoloniesformed (Table Five). L-selectin+CD34+ myeloid progenitors from blood

fanneda significantly lower percentage ofBFU-E colonies (33±9%;mean±2xs.e.m.) than

HCAM+(60±4%;p=O.007), VLA-4+ (66±16%; p=O.Ol), VLA-4- (68±3%; p=0.005), or

l-selectin' (61±12%; p=0.006) CD34+myeloid progenitors (Figure 37B and Table Four).

The specificdifferences between percentage of CFU-GM colonies formed from sorted

CAM+CD34+myeloid progenitors in vitro were determined using Newman-Keuls

analysisand are summarized in Table Six. Lvselcctin" CD34+ myeloid progenitors from

bloodformeda significantly greater percentage of CFU-GM colonies (53±28%;

mean±2x s.e.m.) than CD34+ myeloid progenitors also HCAM+ (12±9%; p=0.009),

VLA-4+(4±2%;p=O.Oll), VLA-4' (8±9%; p=0.007), or L-selectin' (5±2%; p=0.014;

Figure38AandTable Six). No significant difference (p>0.05) between blood derived

SOrtedCAM+1'CD34+myeloid progenitors was found in the percentage of total colonies
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Figure 37. Percentage of CFU-E and BFU-E colonies formed from blood derived
CAM+I-CD34+ myeloid progenitors. Flow cytometrically sorted CD34+ myeloid
progenitors either expressing the cell adhesion molecnle of interest (CAM+) or not
(CAM-) were plated into CFU assays (n=20; pooled buffy coat samples). No
significant difference between sorted CAM+I-CD34+ myeloid progenitors was found
in the percentage of total colonies comprised of CFU-E colonies (A). CD34+
myeloid progenitors coexpressing L-seIectin formed a significantly lower (p=O.002;
indicated by asterisk) percentage of BFU-E colonies than all other sorted
CAM+I-CD34+ myeloid progenitors (B).
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Figure 38. Percentage of CFU-GM and CFU-mix colonies formed from blood derived
CAM+/-CD34+ myeloid progenitors. Flow cytometrically sorted CD34+ myeloid
progenitors either expressing the cell adhesion molecule of interest (CAM+) or not
(CAM-) were plated into CFU assays (n=20; pooled buffy coat samples). CD34+
myeloid progenitors ooexpressing L-selectin formed a significantly greater
(P=O.004; indicated by asterisk) percentage of CFU-GM colonies than all other
CAM+/-CD34+ myeloid progenitors sorted (A). No significant difference (p>O.05)
between sorted CAM+/-CD34+ myeloid progenitors was found in the percentage of
total colonies comprised of CFU-mix colonies (B).
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Ke
uls Test of %BFU-E colouies formed by blood CAM+i-CD34+ myeloid

F' eo Newman- 'Table IV S ' di ates no significant difference (p>o.05) was found between tbe two variables;
enitors. N.. 10 Ie .,

prog , tb ,pecific p_value IS listed.
olherwllle e

CD34+
Myeloid

BCAM+ VLA-4+ VLA-4- Lsselectin" L-selectin-
Progenitor
Subset

BCAW
0.007 N.S.

VLA-4+
N.S.

VLA-4- N.S. N.S.

lrselectin + 0.007 0.0109

lrselectin- N.S. N.S. N.S.

T'ble Sir Newman-Keuls Test of %CFU-GM colonies formed' by blood CAM+'-CD34+ myeloid
progonit... , N.S, indicates no significant difference (p>o.05) was found between tbe two variables;
otherwisethe specific p-value is listed.

CD34+
Myeloid
Progenitor BCAM+ VLA-4+ VLA-4- L-selectin+ L-selectin-
Subset

BCAM+ 0.009 N.S.

VLA-4+ N.S.

VLA-4' N.S.

L-selectin+ 0.009 0.0118

L-selectin- N.S. N.S. N.S.
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I I

. d fCFU-mix colonies (Figure 38B). Analysis of marrow samples revealed no
coDlpnse0

. d''''' rences (p>0.05) in the percentage of total colonies comprised ofCFU-E,
SigOlficantme

CFU
GM or CFU-mix colonies (Figures 39 and 40).

BFU-E, -
LTCICassays ojCAM1'CD34+ myeloid progenitor populations from marrow and

blood Nucleatedcell fractions of marrow or pooled buffy coat specimens from normal

donorswereenriched for CD34+ cells, labelled with mAbs, and sorted flow

cytometrically(Figures 4 and IS). Sorted cells were assayed using the LTCIC assay

platedatdilutionsof3, 10,30,100,300 and 1000 cells per well in replicates of24 wells

ontoirradiatedmouse bone marrow stroma capable of maintaining human hematopoiesis

ill vitro (Figure20). After 5 weeks of culture, each well was individually harvested and

subculturedintoCFU assays. After 14 days, those wells containing at minimum of one

colonyperwellwere scored as positive. A standard curve of the number of cells plated

perwellversuspercent positive wells was plotted on semi-log paper for each subset and

thenumberofLTCIC per 106 sorted CD34 +myeloid progenitor cell was determined

(Figure21)

Nosignificantdifference (p>0.05) in LTCIC enrichment was found between

CAM'CD34+ I id ' 'mye 01 progenitors sorted from blood (n=9; Figure 41A), All subtypes of

CD34' m 1 id 'ye01 progenitors sorted from normal marrow and plated onto M2-1 OB4

stromaconta' d ' ,me significantly different (p=0.0027; ANaVA) enrichments ofLTCICs

perl 0' sonedc 11 (F'e s igure 41B), The Newman-Keuls test was used to determine the

Specificdifferenc bes etween LTCIC enrichment of sorted marrow derived CAM+CD34+

myeloidp ,rogemtors(Table Seven),
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Figure 39. Percentage of CFU-E and BFU-E colonies formed from marrow derived
CAM+/-eD34+ myeloid progenitors. Flow cytometrically sorted CD34+ myeloid
progenitors either expressing the cell adhesion molecule of interest (CAM+) or not
(CAM-) were plated into CFU assays (n~38; normal marrow specimens). No
significant difference (p>O.05) between sorted CAM+/-CD34+ myeloid progenitors
was found in the percentage of total colonies comprised of CFU-E (A) or BFU-E
colonies (B).
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Figure 40. Percentage of CFU-GM and CFU -mix colonies formed from marrow derived
CAM+!-CD34+ myeloid progenitors. Flow cytometrically sorted CD34+ myeloid
progenitors either expressing the cell adhesion molecule of interest (CAM+) or not
(CAM-) were plated into CFU assays (n=38; normal marrow specimens). No
significant difference (p>O.05) between sorted CAM+!-CD34+ myeloid progenitors
was found in the percentage of total colonies comprised of CFU-GM (A) or CFU-mix
colonies (B).
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Figure41. LTCIC content of sorted CAM+CD34+ myeloid progenitors. Blood (A) or marrow
(8) from normal donors was enriched for CD34+ cells. Viable CD34+ myeloid
progenitors coexpressing HCAM, VLA-4 or L-selectin with CD34 were flow
cytometrically sorted at purities greater than or equal to 90% purity and plated into
LTCIC assays. After seven weeks of culture on M2-10B4 stroma, the number of
LTCIC per 10(6) sorted CAM+CD34+ myeloid progenitor cells plated was
determined. No significant difference (p>o.05; Kruskall-Wallis ANDVA) in LTCIC
content was found between CAM+CD34+ myeloid progenitors sorted from blood
(~=9). CAM+CD34+ myeloid progenitors sorted from normal marrow (n=9) were
SIgnificantly different (p=O.0027; ANOV A; indicated by asterisks) from one another.
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0.0029

u uls Test of LTCIC enrichment of sorted marrow derived CAM+CD34+
Newmao-n.e .rable seven.. N S' plies no significant difference (p>O.05) was found between the two

'd rogenitors. ., am
lOyelOlP b rwise the specific p_value is listed.
"ariables; ot e

CD34+ Myeloid
Progenitor
Subset

L-selectin+

L-selectin+

BCAM+

VU-4+

0.0029

CD34+myeloid progenitors derived from normal marrow coexpressing L-selectin

containeda significantly greater enrichment of LTCIC per 106 sorted cell (41 ,667±9,642;

mean±2 x s.e.m.) than those coexpressing HCAM (16,467±2,467; p=0.0029) or VLA-4

(22,333±3,697;p=O.0044). No significant difference (p>0.05) in LTCIC enrichment was

foundbetween blood and marrow CAM+ CD34+ myeloid progenitors (Figure 42).

Specificaim 3: demonstration that VLA-4 binds CD34+ myeloid progenitors to

fibronectin.

Binding of CD34+ myeloid progenitors tofibronectin in vitro. Nucleated cell

fractionsof pooled buffy coat specimens from normal donors were enriched for CD34 +

cells(Figure 4). Cells were plated (50 x 103 cells/well) in replicates of four into four

treatmentgroups. One group was plated onto blank, non-coated wells to serve as

nonspecificbind' I . .mg contro s. The remammg three treatment groups consisted of cells

platedonto FN ...coated wells which received either buffer alone, mAb against the 04

chainof VLA-4 . .., or an isotype identical mAb not specific for the 04 chain of the VLA-4
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VLA-4+ L-selectin+

5
~
'5 4u

'".~t ~
0'" 3~ =..~~
1£-=e 0~..c: 2 ..u~ ,...
U

'" 1...l

0
HCAM+

• Median
T MinimumlMaximum

CD34+ Myeloid Progenitor Sorted

III 25%-75% Bloodo 25%-75% Marrow

Figure 42. Comparison of LTCIC content between blood and marrow derived CAM+CD34+
myeloid progenitors. Blood (gray) and marrow (white) specimens obtained from
normal donors were enriched for CD34+ cells. Viable CD34+ myeloid progenitors
coexpressing HCAM, VLA-4 or L-selectin were flow cytometrically sorted at
purities greater than or equal to 90% and plated into LTCIC assays. After seven
weeks, the number of LTCIC per 10(6) sorted CAM+CD34+ myeloid progenitor
cells plated was determined. No significant difference (p>O.05) in LTCIC
enrichment was found between blood (gray; n=9) and marrow (white; n=9)
CAM+CD34+ myeloid progenitors.
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. Aft stimulating adhesion to FN at 37"C, non-adherent and adherent cells
heterodlmer er

d quantitated and labelled for flow cytometric analysis of C034, C045 and
wereharveste ,

. n The percentage of CD34+ or VLA-4+CD34+ myeloid progenitors
VLA-4expresslO . .

boundin each replicate was determined.

No significant difference (p>0.05) was found in the percentage of C034+ myeloid

progenitorsbound to FN in each of the four treatment groups (Figure 43A). The

adhesionofVLA-4+CD34+ myeloid progenitors was significantly different (p=0.0002,

ANOVA; Figure 43B). Post hoc comparisons to determine specific differences between

thebindingof VLA-4+CD34+myeloid progenitors in each treatment group (and their

100

respectivep-values; Newman-Keuls Test) were performed and are summarized in Table

Eight.A significantly greater (p=0.0005) percentage (mean ± 2 x s.e.m.) of

VLA-4+CD34+myeloid progenitors bound to FN coated wells than to blank, noncoated

wells(41±8%)regardless of the addition of buffer alone, (71±12%, p=0.0005), anti-a4

mAb(SS±8%,p=0.0403), or anti-IgG2a (71±8%, p=0.0008; Figure 43B and Table

Eight).There was no significant difference (p>0.05) between the percentage of

VLA-4'CD34+myeloid progenitors bound to FN coated wells treated with buffer alone

(7IiI2%) and those treated with anti-IgG2a (71±8%). The difference between the

percentageofVLA-4+CD34+ myeloid progenitors bound to FN coated wells treated with

anti-lgG2a(71±8%) and those treated with anti-a4 mAb (55±8%) approached

significance(p=0 0528) Th ... . e addition ofmAb against the 0:4 chain ofVLA-4

significantly( -0 02p-. 49) reduced the binding ofVLA-4+CD34+ myeloid progenitors to

FN byan ave frage 0 16% (Figure 43B and Table Eight). Analysis of



www.manaraa.com

i. blc 034+ Myeloid Prog .em tors

I

2

oMean

80 T 2 x s.e.m.

-g 6
::>

~
• 40•

Blank FN FN FN
+anti-a4 +anti-IgG2a

B. bl VLA-4+CD34+ MI'ye Old Progenitors

100
Mean

80 T 2 x s.e.m.

-g 60
::>
o
~
~ 40

20

FN FN
+anti-a4 +anti-IgG2a

Figure 43. Results of adhesion assay. CD34+ cell enriched fractions from pooled buffy
coat samples were plated into wells of microtiter plates (replicates offour;
n- ) into one of the following well treatment groups: uncoated (Blank),
coated with fibronectin alone (FN), FN and mAbs against the a;4 chain of the
VLA-4 heterodimer (FN+anti-a4), or FN and an isotype identical mAb
(FN+anti-IgG2a) (A) Adhesion of viable CD34+ myeloid progenitors did not
significantly differ (p>0.05) between treatment groups. (B) Adhesion of
viable VLA-4+CD34+ myeloid progenitors was significantlydifferent
(p=O,0002) as revealed by ANOVA. Intergroup differencesshown in Table

Eight.

Blank FN
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VL -4' D 4' m eloid progenitor adhesion was not possible bee thi 11
ause IS ce type was a

the I tal D34' cells (see Figure 23) and the number ofVLA-4'CD34+minorit

myel rd P genit r ells recoverable from the adhesion assay was highly variable.

T.bl< It l. .". ",.,,·lUu'" T.. t of the percentage ofVLA-4+CD34+ myeloid progenitors bound.
COJ.!' I1cIl d fr <tlon. of pooled buffy coats were plated into adhe.ion assays, The adhesion of
VLA...,(' 0 myelo d progenltors w...... e.. ed in uncoated wells (Blank); and FN coated wellswith
burr.... "t1-44, nr ntl-lgC2 a, The specific p-values are listed.

Blank FN coated FN coated
+ anti-a.4

FN coated
+ anti-I G2a

Blank 0.0005 0.0403 0.0008

0.0528

0.0008

0.93910.0005

0.0403

0.9391
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DISCUSSION

Hematopoietic stem cell transplantation fir t b .s ecame a feasible clinical therapy

for the treatment of hematopathologies in the late 1960' . hs WIt the advent of several

successful allogeneic transplants in pediatric pat" ts ith i "len WI Immunodeficiencies. 11-'" Since

that time, hematopoietic stem cell transplantation has b I' d -een app ie to a vanety of

hematologic as well as nonhematologic malignancies, benign pathologies and genetically

determined diseases."

In spite of the many advances in the field of stem cell transplant therapy, many

problems remain. Two specific problems are efficiency and quantity of hematopoietic

stemcells mobilized into the peripheral circulation for collection prior to transplant and

the role of stem cell homing to the marrow during post-transplant hematopoietic

recovery. Understanding the role that cel1 adhesion molecules play in stem cell

peripheralization and homing could lead to the development of enhanced stem cell

collection protocols and post-transplant engraftment rates, respectively.

h th - that modulation of the cell
This study was designed to address the ypo eSIS

adhesion molecules HCAM, VLA-4 and L-se1ectin playa role in regulating

. th arrow and the peripheral
hematopoietic progenitor cel1 traffickmg between em

. VLA-4 and L_selectin in HPC trafficking
circulation. This hypotheSIzed role for HCAM,
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predictsthat I) differences in the surfac .e expresSion of CAMs (HCAM
, VLA-4, or L-

selectin)are d tectable between marrow and bl d .
00 specimens, 2) both high and low

CAM expr ing 034' cells can be functionall d
y emonstrated to be hematopoietic

progenitors and 3) VLA-4 mediates the adhesion of CD34+ II .ce s to fibronectin, a

component the hematopoietic microenvironment.

Specificaim I: differential expression of CAMs between marrow and blood

In order to test the prediction that hematopoietic progenitors will differentially

express cell adhesion molecules as a function of their anatomic derivation, samples of

marrowand blood 034' myeloid progenitors from the same individual were examined for

differencesin expression of CAMs The CAMs examined, homing-associated cell adhesion

molecule, very late antigen-4 and L-selectin, were selected because of established or

. I . hematoooi . II 34-3. 41-44potentia Importance on ematopOletic stem ce s. '

Half of the paired samples were obtained from patients treated with mobilizing doses

. (G CSF) f: whom bone marrow was being
of granulocyte-colony stimulatmg factor - rom

All of these patients had breast carcinoma and no
collected for autologous transplant

. . f di ase in their marrow. The remainder of the
currentor previous histological eVidence 0 ise

I
. ally normal individuals donating bone

paired samples were obtained from hemato ogre

The nucleated cell fraction of each specimen was
marrowfor allogeneic transplant
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isolatedand enriched for CD34' cells CD34' .. ennched spe .
. . . cnnens were analyzed via flow

cytomctry In conjunction with standards of ibanti ody bi di .m mg In order to d t .e ermme the
amountof ntibody b und per cell.

In n nnal individuals, marrow CD34+ I'd .mye 01 progemtor cells bound more

anti- 034 per cell than those in the blood sugge ti, s mg a greater expression of CD34 on

liP s riding in the marrow than those in circulation Alth gh h f .. ou t e unction of CD34

is not k:n wn, tudi have shown that as myeloid progenitors mature their expression of

CD34deer es suggesting an inverse relationship between CD34 expression and HPC

. 6S,66 •maturauon. mce marrow derived HPCs expressed more CD34 per cell than those

whichhave entered the circulation, one is tempted to speculate that marrow myeloid

progenitors are les mature, that is have greater hematopoietic potential, than circulating

myeloidprogenitors. Assessment of in vitro hematopoietic potential (investigated in

executionof specific aim two) demonstrated that blood derived HPCs rather than those

derivedfrom marrow had the greatest short-term hematopoietic potential. No significant

difference in long-term hematopoietic potential was found between blood and marrow.

.' t playa more critical role in
Thesefindings illustrate that physiologic compartmen may

characterization of HPC maturation state than CD34 expression.

. . . ti difference was found between
In normal individuals, no slgmficant quantlta rve

blood d
. f HCAM, VLA-4 or L-selectin expression per CD34'

an marrow In terms 0

. _ titative differences in CAM
myeloidprogenitor cell. Lack of a slgmficant quan

. ion during marrow ingress and egress
expressionsuggests that modulatIOn of express . .

. . CAM ligand affinity/avidity

d
. .' Ives alteratIOns III

uring steady-state hematopOieSIS IllVO
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ratherthan quantitative decreases i rfn su ace expression Anal .
. ... . YS1Sof CAM li and

affinltyl vidit Interactions on marr gow versus blood derived HPc .
Swould provide insight

intothi i u .

. mobilized patients ., marrow denved CD34+ I idmye 01 progenitors

A-4 antigens per cell th h .an t ose m circulation, a finding which is

consistentwith the hypothesis that a quantitative difference i .erence in the expression of VLA-4

exi ISbetween HP residing in the marrow d th .. .an ose m circulation. These data are

consistentwith the hypothesis that down-regulati kion or mas ng ofVLA-4 expression is

involvedin the release of HPCs from the marrow mi . .rmcroenvironment into the peripheral

circulation.

In

ed m reexpr

o ignificant quantitative differences in HCAM or L-selectin expression

betweenthe blood and marrow CD34· myeloid progenitors from G-CSF mobilized

individualswere detected These findings suggest that during G-CSF mobilization

down-regulation of surface expression of HCAM or L-selectin does not playa direct role

inegress from the marrow into the peripheral circulation. Thus, as in the case of steady-

statehematopoiesis, the lack of significant quantitative differences in HCAM or

L-selectinexpression between G-CSF mobilized blood and marrow suggests that

alterations in H AM or L-selectin avidity and/or affinity might playa more critical role

. . . piously reported studies of
10 HPC trafficking than quantitative changes in expreSSIOn. rev

h
d L_selectin expression on

HCAMexpression on circulating mature lymp ocytes an
. . 30,38

. h I key role in HPC hommg.
HPCshave suggested that these CAMs mIg t P ay a
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nal i ofH

underno

and L-selecti n mediated adh .
esion of HPCs to marrow endoth li

ti di . e tum
con iuons would provide insight into th

e role of these CAMs in HPC

homing

The bove conclusions were based on . .expenments In which th .e precise molecular

characteri ti 0 the epitopes recognized by the mAb h .s, t e number of epitopes per

antigenand th mechanism of mAb binding to antigen were not lenown. The binding of

mAb to tructurally repeated motifs such as the o-helices and n ltd h, p-P ea e s eels of L-

selectin, could have resulted in more than one mAb binding to h f 416364eac an igen, " If this

hadoccurred then the antigen binding observed flow cytometrically would have reflected

a greater number of antigens present than actually occurring in nature. Although the

amountof m b bound to each cell would be linearly proportional to the number of

antigenspr ent, care must be taken in the interpretation of the number of CAMs present

per cell. The Q bead assay was utilized to demonstrate differences between blood and

marrowper cell expression in terms of which cell type expressed more or less of the

CAM under examination, Thus, this assay allows for relevant comparisons of antigenic

expression rather than determination of exact number of antigens present per cell,

In
ddi th I' " f th QSC bead assay redistribution of antigensa Ilion to e irrntations 0 e '

. .... d . mplexes on the cell surface)
(patching, capping and pinocytosis of antibo y-antIgen co

. . d durin flow cytometric analysis, In
couldhave adversely affected detectIOn of antibo Y g

. ' th el1 surface and to minimize
orderto prohibit the redistributIOn of antIgens on e c

. d out at 4°C. In addition,
. I . ents were came

conformational changes of antigen, al expenm
. .d a metabolic inhibitor.

allmAbs utilized in these experiments contained sodIum azi e,
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j{ d th cpr uti ns n t been employed fl
, ow cytometric analysis of CAM

. . and CD34
exP n per m el id progenitor cell might h .ave estimated cell ....surtacs expression to be
much low lh n th t present in nature

mobiliz.edmrr

o umm rize the above data and concl .usions regarding ific aispeer IC aim one, G-CSF

4' myeloid progenitor cells expressed more VLA 4 .- antigen than

unterparts These findings support the h thesi th .ypo esis at modulation of

an important role in HPC peripheralization, namely during G-CSF induced

th ir circul tin

VLA-4 pi

HP egr rom the marrow microenvironment. The lack of detectable quantitative

differen in H.....I"UVl nd L-selectin expression in G-CSF mobilized or normal

individual d n t rule out the possibility that alterations in affinity and/or avidity of

th e for their ligands as a mechanism for HPC peripheralization and homing.

The finding that n rmal marrow CD34+ myeloid progenitor cells expressed more CD34

than th derived from blood suggested that marrow HPCs are less mature than those in

the blood; h wever, subsequent experiments (specific aim two) refuted this possibility.

Thesedata are con i tent with the hypothesis stated in specific aim one that

. .. II the cell adhesion molecules only
hematopoietic progenitor cells differentia Yexpress

. .. Quantitative changes in
WIth regard to quantitative changes III VLA-4 expressIOn.

. db tween the marrow and blood of
He and L- electin expressIOn were not observe e

. h t ther mechanisms of
either normal or F mobilized individuals suggestmg mat o

. I· HPC trafficking.
modulating function might be playmg a ro e 10
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peelfic im 2 cl n genic potential and Iong term cultu '"re Inttlating cell COntentof
m8lTOW nd bl

o ( I th prediction that both high d Ian ow CAMe .xpressmg CD34+ cells can be

funCli n II dem n trated to be hematopoietic .progemtors, nucleated cell fractions of

bufTy coat specimens from no Irma donors were enriched for CD34+

imens were labeled with mAb against CD34 dan one of the following cell

ul H AM, VLA-4 or L-selectin.

m8lTOwr

cell

adh i nm

of ~9O"10

The labeled samples were analyzed

metrically for CAM+1-CD34+ I'mye Old progenitors. Post-sort purities

34' myeloid progenitors were used to plate colony forming unit

and ned 0 W c

assay to assess rt-term hematopoietic potential.

4' myeloid progenitors sorted from either blood or marrow produced

hematopoietic col nics in vitro. These findings are consistent with the prediction that

each of the -,_ 034' myeloid progenitor populations examined can be functionally

demonstrated (0 be hematopoietic progenitors with regard to establishment of short-term

hematopoi i in itro.

irculating AM"'C034+ (i.e., HCAM" VLA-4+1
. or L-selectin+

I

.) myeloid

f I . than those derived from marrow.
progenitors produced a greater total number 0 co omes

d fbI od derived CD34+ myeloid
The greatest total number of colonies were forme rom 0

. _ VLA 4- VLA-4+ or L-selectin+
progenitors also H AM'; followed by L-selectlfi, -,

. f d more colonies than those
subtypes ince AM-CD34' myeloid progenitors ocme

that VLA-4 and L_selectin expression

expressing VL -4 or L-selectin, this data suggests
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1l11ghl nol pi an rm rtant r Ie in terms of short-term hem '.
0pOlehc reconstitutio b

ut th pos ibility that VLA-4 or L I . n ut-se ectm f .unction in a secondary fashion

t rm rute to thc appropriate ph si I .
y 0 ogic compartlnent. The CFU ass

I' " ~
r ier supposiuon (specific aim one) that ci I'ircu atmg myeloid

m turc than their marrow counterparts and suggests that CD34

n t lcly predict hematopoietic potential Par t. arne ers such as

ic mp rtrnent (blood versus marrow) and the coexp . f thression 0 0 er markers

(e II dh i n m lecules and/or lineage specific markers) may playa key role in

dOCS nol nil

tOCll bl HP

CJ{p n d

definin \ hich pecilic HPC subtype is a true stem cell.

f blood derived myeloid progenitors revealed those expressing VLA-4

and 034 produced a maller percentage of CFU-GM colonies than their marrow

counterparts Th e findings support the hypothesis that as myeloid progenitors mature,

as evidenced by a decrease in their ability to form CFU-GM colonies, egress into the

peripheral cireul ti n might, in part, occur through alterations in ability to bind

fibronectin

The distri ution of colonies types formed from blood derived CD34+ myeloid

. . hile the distribution of
progenito was ignificantly affected by L-selectm expression, w

ow were not significantly affected.
colony types formed by all subtypes sorted from rnarr

. . duced a significantly smaller
C034' myeloid progenitors expressmg L-selectm pro

. higher percentage of CFU-GM
percentage of B -E colonies and a concomitantly

. I s a role in establishment of
colonies These findings suggest that L-selectm P ay

1\0
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granulocyticand monocytic lineages. Wheth L Ier -se ectin expression on HPCs results in

enhancedestablishment of granulocytic and rnonocvi] rIC meages post-transplantation

requiresfurther investigation

To test whether high and low CAM expressing CD34+ 11 .ce s were functionally

demonstrativeof long term hematopoiesis sorted CAM+CD34+ I id ., mye OJ progenitor

populationsfrom marrow and blood of ;,90% purities were plated into long-term culture

initiatingcell assays. All sorted CAM+CD34+ myeloid progenitor populations formed

CFUcoloniesafter 5 weeks of long term bone marrow culture. These findings are

consistentwith the prediction that each of the CAM+'-CD34+ myeloid progenitor

populationsexamined can be functionally demonstrated to be hematopoietic progenitors

withregardto establishment of long-term hematopoiesis in vitro.

Marrow derived L-selectin+CD34+ myeloid progenitor cells contained the greatest

enrichmentof LTCIC per sorted CD34+ myeloid progenitor cell, suggesting that

L-selectin+CD34+cells have the greatest long term hematopoietic potential of the CAM ./-

C034+myeloid progenitor cells examined. This finding suggests that L-selectin might

playan important role in establishment of long term hematopoiesis.

To summarize the above findings concerning the short-term and long-term

- RCAM, VLA 4 or L-selectin circulating
hematopoieticpotential of HPCs expressmg - ,

h hematopoietic potential than
CAM+'-CD34+myeloid progenitors have greater sort-term

. . . ment Marrow derived
theircounterparts residing in the marrow mlcroenvlfOn .

. th reatest enrichment of LTcrCs,
L-selectin+CD34+myeloid progenitors contamed e g
. . . d b h e expressing RcAM and VLA-4.
mdlCatlveof a functional stem cell, followe y t os

III
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Bloodderived CD34+myeloid progenitors wer '.e not sIgnificantly enriched for stem cell
contenton the basis of CAM coexpression Th fi .. ese mdmgs suggest that L-selectin +

CD34+cells derived from marrow correspond with Ia ess mature cell type HCAM or

VLA-4 expression provides no insight into the Ion -te h . .g rrn ematopOiebc potential of

CD34+myeloid progenitors regardless of stem cell Th .source. ese findings expand the

predictionthat both high and low CAM expressing CD34+ II .ce s can be functional! y

demonstratedto be hematopoietic progenitors to suggest a r 1 f L I .o e or -se ectin as a marker

ofa lessmature hematopoietic cell type than HPCs expressing CD34 alone.

Specificaim 3: demonstration that VLA-4 binds CD34+ myeloid progenitors to

fibronectin.

Mature hematopoietic cells, such as monocytes, T cells and B cells, bind to the

CS-1domainofFN via the a4 chain of VLA_467 To test the prediction that VLA-4

expressedon the surface of hematopoietic progenitors mediates binding to fibronectin,

nucleatedcell fractions of pooled buffy coat specimens from normal donors were

enrichedfor CD34+cells. Cells were plated into adhesion assays in which a4 mediated

bindingof VLA-4 to FN was blocked with monoclonal antibodies. The percentage of

boundCD34+or VLA-4+CD34+ myeloid progenitors was determined flow

Cytometrically.
bl k e of the a4 chain of VLA-4

In vitro adhesion assays revealed that mAb oc ag
. 1 .d genitors to FN by 16%
significantlyreduced the binding of VLA-4+CD34+ mye 01 pro
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p----~

00 averagewhen compared to treatment with buffer alone Th '
, ese findmgs are consistent

withtheprediction that VLA-4 mediates the binding of I id 'mye 01 progenItors to FN

It is unclear why on average 29% of the VLA-4+CD34+ I' ,mye Old progenitors

failedto bind FN in these experiments (Figure 43B), It is kno th 'wn at marrow denved

CD34'hematopoietic progenitors and hematopoietic cell lines express /31integrins

(VLA-4 and VLA-S) in a low affinity state; that is, in a weakly adhesive phenotype to

FN,61 Uponstimulation with cytokines, interleukin-3 or GM-CSF, the binding of these

celltypesto FN increases in a dose dependent manner suggesting that cytokines

specificallystimulate Bl integrin function." Perhaps, just as their marrow counterparts,

bloodderivedC034' myeloid progenitors require cytokine activation of VLA-4 in order

to fullybind FN. Elucidation of the role of cytokine activation of VLA-4 and other /31

integrinson HPCs warrants further study,

The adhesion assay contained intrinsic limitations, Adhesion ofVLA-4'CD34'

myeloidprogenitors to FN when treated with anti-a4 mAb when compared to those

treatedwith isotype identical control approached but did not reach statistical significance

(p9l,0528). Since the data presented herein were based on six experiments, a larger

, ' ific binding of 40% of VLA-
samplesizemight have resolved this Issue, The nonspect I

, ' I tes was not affected by blocking
4'C034' myeloid progenitors to the Nunc micronter P a

Consl'derl'ng these limitations, the adhesion assay
withhumanand bovine serum albumin.

nclusive inferences conceming
requiresfurther development in order to draw more co

VLA-4 mediated adhesion ofHPCs to FN,
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n ITem III rat ure concerning CAMs and
HPCs, a model for HPC

w microenvironment and the bl
ood was developed. This

th t HP s utilize the cell adhesion molecules HCAM, VL A-4 and

l- el In I penph li ....e from and home to th .e marrow mIcroenvironment (Figure I).

ACCOrchn I Uti mel, HP s could utilize HCAM to adher te 0 components of the

them

I 14

marTO nm nt such as collagens and hyaluronic acid. HPCs could utilize

ibronectin, a component of the marrow microenvironment, andVL

VC {-I tr mal cells. Peripheralization ofHPCs could occur through a

quanUlau redu j n in H AM or VLA-4 surface expression and/or reduced affinity of

these reeep f r their r pcetive ligands. Homing of circulating HPCs to the marrow

microen Ironment could ccur via L-selectin mediated binding to marrow endothelium

elCp lar addr in or HCAM mediated binding to marrow endothelium. Thus

HP modulau n f HlJ\c1V1 VLA-4 and L-selectin could facilitate marrow ingress (via,

L-selecti.n r H....I'~ mediated homing) and marrow egress (via down

regul' m kin ofH AM and VLA-4).

I fl 15 the mechanics of HPC
If this model of HP trafficking accurate y re ec

. d the peripheral circulation, then
migrau D between the marrow microenVIronment an

tJ I . h Id have been differentially expressed between these
'1 A-"I and L- e ecun s ou

. demonstrated that VLA-4 but
. 15 presented herem

anatomIc compartments. The expenmen
b tween circulating HPCs and those

1I0tL-selectin or H are differentially expressed e
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ciated with an increased ability to restore granulocytic and monocytic

idm in th m JTOW VLA -4 expressi "on was slgnlficantl d
HP rei Ii e th e i th Y ecreased on circulating

10 e marrow in G CS
t th t HP' - F mobilized individuals, These findings

p nphcralization, at least i th
n e context of G-CSF mob'I' ,

I lzallon
th d wn re ulation or masking of VLA 4' '

, , - expression, The mechanism by
which • F m ilization affects VLA 4 '

- mediated adhesion to fibronectin and/or

n tim wn The '
, expenments presented herein demonstrated no quantitative

II expression of HCAM L I 'or -se ectm suggesting that quantitative

chllll In pr ion of these CAMs might playa lesser role in HPC trafficking than

chan in li nd binding affinity and/or avidity,

u

hi m el also predicts that HPCs expressing either RCAM, VLA-4 or L-

funeti nally capable of establishing hematopoiesis, The results of the CFU

and a s confirmed this prediction of the model. L-selectin expression on

lin ays) and the greatest enrichment of stem cells (LTCIC assays) when

compared all ther examined subtypes ofCD34+ myeloid progenitors. These findings

SU t that in addition to mediating homing to the marrow post-transplantation, as

, b d d as a marker of a less mature
SlI ted by the literature, L-selectm may e regar e

, I hematopoietic reconstituting
034" HP cell type possessing substantIal ong-term

capabiliti
, nt literature accurately reflects the

If the model of HPC traffickmg based on curre
arrow microenvironment and the peripheral

mechanics ofHP migration between the m .
" FN hould have resulted in

di ted bmdmg to s
circulation, then blockage of VLA-4 me ia
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th

00 dh i n of HPCs to fibronectin
This model was

th ill vitr dhesi sUpported by results from
n assays performed on HPC f

s rom normal· di .
In IVldualswhich

ted that bl d derived HPCs b d
oun to fibronectin. Whether VLA-4 I .

combin Ii n . 1 th a one Or In
It 1 er CAMs present on the surface ofHPc .

s mediated this interaction
he b ervation that binding could b . .fi

e slgOi Icantly decreased by blocking
bindin it f VLA 4 ith

- WI mAbs is consistent with the model of HPC trafficking

100b the literature However, the discovery that almost a third of the HPCs

A-4 did not bind to fibronectin requires modification of this model.

d

In

Perh p in ddition to quantitative modulations in expression per cell, alterations in

-4 binding affinity for FN plays a significant role in HPC peripheralization.

Th findings presented herein have resulted in modification of the model

so led b the current literature concerning the role of BCAM, VLA-4 and L-selectin

in HP trafficking (Figure 44) The proposed model ofHPC trafficking suggests that

quantitati e changes in VLA-4 expression in addition to alterations in ligand

affinity/s idit interactions plays a role in HPC egress from the marrow

microenvironment In addition this model proposes that affinity/avidity interactions

. . rn L-selectin mediated homingnub than quantitati ve changes 10 surface expression gove

. . Th· fi ding opposes the modeland H mediated homing/peripherahzatlOn. IS In

.. han es in surface expression of
SOjl;Rcstedby the literature which indicated quantItative c g

L- lectin and H AM playa role in HPC trafficking.
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To summarize the proposed model of the role of HCAM, VLA-4 and L-selectin

in HPC trafficking, peripheralization of HPCs can be promoted by quantitative decreases

insurfaceexpression ofVLA-4. Thus HPCs may enter the vasculature by virtue of their

d easedability to bind components of the marrow microenvironment, namelyecr .

fibronectinand VCAM-I expressing stromal cells. Peripheralization does not appear to

involvequantitative decreases in HCAM expression per HPC but instead involves

alterationsin HCAM affinity for hyaluronan and collagen. With regard to HPC homing

tothemarrowmicroenvironment, modulation of L-selectin and/or HCAM affinity rather

thanquantitativechanges in surface expression most likely plays an important role in

HPC homingto marrow endothelial cells. Once bound to endothelium by L-selectin,

VLA-4 mediated adhesion to endothelial cells expressing VCAM-I may enable HPC

transmigrationinto the marrow microenvironment. Thus, these studies implicate the cell

adhesionmolecule VLA-4 and L-selectin as possessing an important role in HPC

trafficking,while the role of HCAM in this complex process remains speculative
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I PRJ
IPLES OF DENSITY GRADIENT CENTRIFUGATION

Th II wing principles of density gradient centrifugation were outlined by
m in the I te I 60's apply for both Ficoll-Paque® Plus and Polymorphp

rep
41

\I I 01 treated blood is layered on the density gradient solution and centrifuged
rt .od 0 lime, Differential migration during centrifugation results in the

fIe ntaining different cell types (Figure 4), The bottom layer contains
hich h ve been aggregated by the gradient and, therefore, sediment

lhr ugh the gradient. The layer immediately above the erythrocyte layer
m u g.ranulocytes which at the osmotic pressure of the gradient solution attain
I en ugh to migrate through the gradient layer.

f their lower density, the lymphocytes are found at the interface
B u lasma and the gradient with other slowly sedimenting particles (platelets

bet'\\'tlell Ih I e lymphocytes are then recovered from the interface and subjected to
onocv .J ith a balanced salt solution to remove any platelets, gradient andhin tep WI
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RPHOLOGIC CHARACT
ERIZATION OF HEMA

TOLOGIC

lIowi.ng m rphologic characteristics were '. .
t I I cell types within all cytocentrifi ~tt~~zed in the differentiation of

uge s Ide preparations stained with

'I' oblll t • (diamete -15-20 urn) moderate bl .
n ngranular cytoplasm which' r h' uish, unevenly stained

. h IS 19 ter next to the n I thpe ip cry Nucleus is round and stains d . uc eus an at the
nu I Iiare usually demonstrable. pre ommantly red. Two or more

r m 10 te - (diamcter=15-20 urn) cytoplasm sam .
ex pt distinct dark-blue or reddish-blue granu~eCOsolofrattonbaslmhyeloblast

I . vana e s apes are
p.. ern uc eus IS round and large relative to cytoplasm Nucleoli rna be
VI ible but are usually indistinct. y

te, neutrophilic - Small islands of reddish granules present in cytoplasm
dj nt to nucleus. Nuclei are round, oval or flattened on one side.
uel li are indistinct.

if mvs te, neutrophilic - Slightly smaller than myelocytes. Small, pinkish-
blue granules present in cytoplasm. Nucleus slightly indented.

B nd n utrophil - Slightly smaller than metamyelocytes. Cytoplasmic granules
are mall, evenly distributed and stain various shades of pink and blue.
Th opposite edges of the nucleus become approximately parallel for an
appreciable distance giving a horseshoe appearance.

III nt n utrophil - Similar size to neutrophilic band. Cytoplasmic
granules present as described for band neutrophil. Nucleus is separated
into definite lobes with a very-narrow filament or strand connecting the

I b '
inophil > ize comparable to segmented neutrophil. Cytoplasm contains

large spherical granules which stain red. .
pbiJ _ 'ire comparable to segmented neutrophil. Cytoplasm con~ms ~arge.

. h . d p purplish-blue to dark purp e-re .
pherical granules whic stam ee'l ith their diameters 3-4 times those

M OOC'''''' lightly larger than neutrophl s ~I fi Id Dull gray-blue variably
f erythr cytes in the same microscoPiC :e h .ped) with blunt pseudopods.
h ped cytoplasm (most are round or ova s a
ueleu has brain like convolutIOns. lar cytoplasm with large

mpbo t - (diameter=7-1 0 urn) Blue, nOlngran'~e is comparable to diameler
. yt lasrn Nuc eus Sl

nucleu in relatIOn to c op .. ' leoli
of n rmal erythrocytes No VISiblenuc .
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2 M RPHOLOGIC CHARA
CTERIzATION OF

TI UED) HEMATOLOGIC(

PI III )'te· (diameter= 15-25 urn N
o yl pi m usually has roun~ oroongrlanUlar,translucent dark bl
Iff I r m . va shap . h ' - ue
I ro dargms with distinct perinUclea e ~'t smooth or slightly
. un and eccentric Nrc ear zone. Nucl .

Pr no 01 blast _ V' ibl .. uclear chromatin i et are small,
151 e nucleoh. Chromati s CO~seand lumpy .

. y1 plasm stains light blue to dark n s:rand are lInear and distinct
In pI mocytes) , roya -blue color (similar to th .

B b
Oil at seen

sop I normoblast - Sm II
o a er than pronormobl
unge but predominant color is bl D' 0 ast. Cytoplasm has reddish
b the' ue. ISllnguishabl fcoarsenmg of the chro f e rom pronormoblast
nucl Ii rna In pattern and ill-defined or absent

P I bromatic normoblast - smaller th
y1 plasm Nuclear ch " an normoblast, have relatively more

rornatm ISthickened and 0 I I
ucleoli are not visible. irregu ar y condensed.

rth brom tic normoblast C I .am . - ytop asm ISpredominantly red with minimal
unt of residual blue. Nucleus is small and has a nonlinear clum ed

hr mattn structure or a solid blue-black degenerated nucleus. p
t - (diameter-so-B urn) biconcave discs which appear in stained

om. as red, Circular objects with distinct, smooth margins. The
inten ity of the stain in the central portion where the cell is thinnest is less
than at the thicker marginal area.
ryo yte - Large cells with relatively large amount of cytoplasm,
und hapes, even margins and multiple nuclei. Chromatin pattern of

nucleus i linear, coarse with distinct spaces between the chromatin
strand ytoplasm contains numerous small, uniformly distributed
granul of reddish-blue hue. Numerous cytoplasmic granules, two or

more nuclei
r m ocyt _ (diameter=l-4 urn) Cytoplasmic fragmentofa megakaryocyte

hich has multiple pointed filaments or tentacle lik~ protrusions. Round,
oval pindle and discoid shapes with smooth margms are also
bs~able. Cytoplasm stains light blue and ~ntains variable numbers of
mall, blue granules which tend to aggregate III the center.

. d b e derived from an altas of
The m rp 10 ical characteristics descnbe a ove wer

ic cell b Diggs et al."

b
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APPENDIX3. CITRATE PHOSPHATE DEXTROSE SOLUTION

I) Combined the following in volumetric flask and increased volume with
distilled water (dHzO) to - 50 mL:

166 g sodium citrate (dihydrate) USP
161 g dextrose (monohydrate) USP
188 mg citric acid (anhydrous) USP
140 mg monobasic sodium phosphate (monohydrate) USP
Adjusted pH to 7.2 to 7.4 using 2 M NaOH
Increased volume to 63 mL with dHzO.
Stored in sterile reservoir at 4 "C until use.

2)
3)
4)
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"''''~_. " AR Y OF FLOW CYTOMETRIC FLUOROCHROME

LONAL ANTIBODY LABELLING

1I 'ample
Monoclonal Antibody ConjugateNurn ription

PE PerCP PurposeFITC

'II • --- --- --- Compensation for

1

autofluorescence
ells· CDl4 IgGl --- Compensation for

2

emmission spectraIgGI CD14 ---
overlap

3 ells·

of eachCells " IgGI IgGl CD45
fluorochromeIgGI IgG2a CD45S Cells>

CD45 Analysis of CAM
ells> CD44 CD34

expression on

6

CD45 CD34' myeloid
CD49d CD347 ells>

progenitorsCD62L CD34 CD45ells·

---
Standardization of

CD44 ---Q Beads9

--- mAb bindingCD49d ---QSC Beads10

---CD62L ---QSC BeadsII

CD34 ---~Bead -12

b ffy coat specimensblood or uow,• m
ean ed ft r
- lDIph-

I cells denved from marrn nuc ear
4' cells

m bs were added

b
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PH PHA TE BUFFER FOR STERILE SORTING

[6 10' I. I 3 x 10" M KCI, 41 x 10" M Na
2
HP0

4
, 7.1 x 10-4M KH

2

PO. indH)

mbine the following in volumetric flask and increased volume with
dl tilled water (dH,O) to -470 mL:

400 g aCI
0097 K I

7 a1HPO,
KH,P04

djusred pH to 7.2 to 7.4 using 2 M NaOH
In ed volume to I L with dH

2
0

terile filtered with 0.2 zzrn Nalgene filtration system (Nalge Company,
ester, NY) .

I red in sterile reservoir at 4 °C until use.)
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